Properties

Label 16.8.35555044697...0000.4
Degree $16$
Signature $[8, 4]$
Discriminant $2^{16}\cdot 5^{8}\cdot 19^{3}\cdot 29^{4}\cdot 31^{5}$
Root discriminant $52.71$
Ramified primes $2, 5, 19, 29, 31$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1567

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![566029, 0, 164331, 0, -532890, 0, -127667, 0, 47842, 0, 4592, 0, -612, 0, -5, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 5*x^14 - 612*x^12 + 4592*x^10 + 47842*x^8 - 127667*x^6 - 532890*x^4 + 164331*x^2 + 566029)
 
gp: K = bnfinit(x^16 - 5*x^14 - 612*x^12 + 4592*x^10 + 47842*x^8 - 127667*x^6 - 532890*x^4 + 164331*x^2 + 566029, 1)
 

Normalized defining polynomial

\( x^{16} - 5 x^{14} - 612 x^{12} + 4592 x^{10} + 47842 x^{8} - 127667 x^{6} - 532890 x^{4} + 164331 x^{2} + 566029 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3555504469700818662400000000=2^{16}\cdot 5^{8}\cdot 19^{3}\cdot 29^{4}\cdot 31^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $52.71$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 19, 29, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{93} a^{12} - \frac{5}{93} a^{10} + \frac{8}{93} a^{8} + \frac{4}{93} a^{6} - \frac{22}{93} a^{4} - \frac{3}{31} a^{2} + \frac{1}{3}$, $\frac{1}{93} a^{13} - \frac{5}{93} a^{11} + \frac{8}{93} a^{9} + \frac{4}{93} a^{7} - \frac{22}{93} a^{5} - \frac{3}{31} a^{3} + \frac{1}{3} a$, $\frac{1}{116964997924586453284539} a^{14} + \frac{208999521916870594071}{38988332641528817761513} a^{12} - \frac{51424403044473699203798}{116964997924586453284539} a^{10} + \frac{29061514085136990952286}{116964997924586453284539} a^{8} - \frac{42344158408876848757319}{116964997924586453284539} a^{6} - \frac{17246386826988254469413}{116964997924586453284539} a^{4} + \frac{1642378234773898428811}{3773064449180208170469} a^{2} + \frac{52314567292671163373}{121711756425168005499}$, $\frac{1}{116964997924586453284539} a^{15} + \frac{208999521916870594071}{38988332641528817761513} a^{13} - \frac{51424403044473699203798}{116964997924586453284539} a^{11} + \frac{29061514085136990952286}{116964997924586453284539} a^{9} - \frac{42344158408876848757319}{116964997924586453284539} a^{7} - \frac{17246386826988254469413}{116964997924586453284539} a^{5} + \frac{1642378234773898428811}{3773064449180208170469} a^{3} + \frac{52314567292671163373}{121711756425168005499} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 59873922.9279 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1567:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 4096
The 106 conjugacy class representatives for t16n1567 are not computed
Character table for t16n1567 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.725.1, 8.8.309593125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ $16$ R ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ R R ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ $16$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
$19$19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.4.3.1$x^{4} + 76$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
19.8.0.1$x^{8} - x + 2$$1$$8$$0$$C_8$$[\ ]^{8}$
$29$29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
31Data not computed