Normalized defining polynomial
\( x^{16} + 6 x^{14} + 127 x^{12} - 5144 x^{10} + 23711 x^{8} + 16878 x^{6} - 8239 x^{4} - 21340 x^{2} + 400 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(35332779248867141512750084000000=2^{8}\cdot 5^{6}\cdot 13^{8}\cdot 101^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $93.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{8} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{3}$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{4}$, $\frac{1}{16} a^{9} - \frac{1}{16} a^{7} - \frac{1}{16} a^{5} + \frac{1}{16} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{80} a^{10} + \frac{3}{80} a^{8} + \frac{1}{80} a^{6} + \frac{17}{80} a^{4} - \frac{1}{4} a^{3} - \frac{11}{40} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{160} a^{11} - \frac{1}{160} a^{10} + \frac{3}{160} a^{9} + \frac{7}{160} a^{8} + \frac{1}{160} a^{7} + \frac{9}{160} a^{6} - \frac{3}{160} a^{5} + \frac{33}{160} a^{4} + \frac{19}{80} a^{3} - \frac{3}{10} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{13120} a^{12} - \frac{19}{3280} a^{10} - \frac{373}{6560} a^{8} + \frac{43}{820} a^{6} - \frac{11}{2624} a^{4} - \frac{1}{4} a^{3} + \frac{987}{3280} a^{2} - \frac{1}{4} a + \frac{79}{164}$, $\frac{1}{13120} a^{13} + \frac{3}{6560} a^{11} - \frac{1}{160} a^{10} + \frac{1}{41} a^{9} + \frac{7}{160} a^{8} - \frac{5}{1312} a^{7} + \frac{9}{160} a^{6} - \frac{1121}{13120} a^{5} - \frac{7}{160} a^{4} + \frac{331}{3280} a^{3} - \frac{1}{20} a^{2} + \frac{19}{82} a$, $\frac{1}{19759612160} a^{14} - \frac{549223}{19759612160} a^{12} - \frac{8110603}{9879806080} a^{10} + \frac{10824941}{210208640} a^{8} + \frac{320469617}{19759612160} a^{6} + \frac{4718989009}{19759612160} a^{4} - \frac{1748564103}{4939903040} a^{2} - \frac{98617895}{246995152}$, $\frac{1}{98798060800} a^{15} - \frac{3561359}{98798060800} a^{13} - \frac{78895799}{49399030400} a^{11} - \frac{1}{160} a^{10} + \frac{9767489}{1051043200} a^{9} + \frac{7}{160} a^{8} + \frac{4052506121}{98798060800} a^{7} + \frac{9}{160} a^{6} - \frac{7588598687}{98798060800} a^{5} - \frac{7}{160} a^{4} - \frac{1140112631}{24699515200} a^{3} - \frac{1}{20} a^{2} + \frac{589655181}{1234975760} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22552817244.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 43 conjugacy class representatives for t16n1275 |
| Character table for t16n1275 is not computed |
Intermediate fields
| \(\Q(\sqrt{101}) \), 4.4.663065.1, 8.4.371508639120125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.8.8.4 | $x^{8} + 2 x^{7} + 2 x^{6} + 8 x^{3} + 48$ | $2$ | $4$ | $8$ | $C_8$ | $[2]^{4}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $101$ | 101.8.4.1 | $x^{8} + 244824 x^{4} - 1030301 x^{2} + 14984697744$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 101.8.4.1 | $x^{8} + 244824 x^{4} - 1030301 x^{2} + 14984697744$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |