Normalized defining polynomial
\( x^{16} - 8 x^{15} + 112 x^{14} - 644 x^{13} + 2912 x^{12} - 9464 x^{11} - 15460 x^{10} + 149658 x^{9} - 632204 x^{8} + 1551360 x^{7} + 1824938 x^{6} - 10197714 x^{5} + 10611616 x^{4} - 2755458 x^{3} - 1021420 x^{2} + 491775 x - 8881 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3502535855067952407242642672315293971641=41^{15}\cdot 83^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $296.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{1223877146484019035787943} a^{14} - \frac{7}{1223877146484019035787943} a^{13} - \frac{108846569425706484857012}{1223877146484019035787943} a^{12} - \frac{570797729929780126645780}{1223877146484019035787943} a^{11} - \frac{216249096115067798143631}{1223877146484019035787943} a^{10} - \frac{9807251902441533266734}{1223877146484019035787943} a^{9} - \frac{598422035166631154486415}{1223877146484019035787943} a^{8} - \frac{154611937694350468193401}{1223877146484019035787943} a^{7} + \frac{510601625241957485144223}{1223877146484019035787943} a^{6} + \frac{596188320802408800633048}{1223877146484019035787943} a^{5} - \frac{478150329312138483293866}{1223877146484019035787943} a^{4} - \frac{277807281288673287907962}{1223877146484019035787943} a^{3} - \frac{567873586501835694902950}{1223877146484019035787943} a^{2} - \frac{571978421675779325655400}{1223877146484019035787943} a + \frac{54909660295677440601530}{1223877146484019035787943}$, $\frac{1}{6955293823468680180382880069} a^{15} + \frac{2834}{6955293823468680180382880069} a^{14} + \frac{1112395479584547597046363288}{6955293823468680180382880069} a^{13} + \frac{2893082590880315913051629959}{6955293823468680180382880069} a^{12} + \frac{2579717644053016942261203708}{6955293823468680180382880069} a^{11} + \frac{1909261186735237195735416061}{6955293823468680180382880069} a^{10} + \frac{2152488250344518894608836717}{6955293823468680180382880069} a^{9} + \frac{1533211807164684832187646990}{6955293823468680180382880069} a^{8} + \frac{1869490384904452178843752480}{6955293823468680180382880069} a^{7} + \frac{2001960121551012190199944941}{6955293823468680180382880069} a^{6} + \frac{1842605880941381586481324548}{6955293823468680180382880069} a^{5} + \frac{2926090996983476539967807175}{6955293823468680180382880069} a^{4} + \frac{3212259909275119600385150618}{6955293823468680180382880069} a^{3} + \frac{75049624474555280842424990}{6955293823468680180382880069} a^{2} - \frac{880818481258309812987320526}{6955293823468680180382880069} a + \frac{2453215748850523338922915741}{6955293823468680180382880069}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 51935584821200 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).D_4$ (as 16T591):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $(C_2\times OD_{16}).D_4$ |
| Character table for $(C_2\times OD_{16}).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.9242710845966413801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{12}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| $83$ | 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |