Normalized defining polynomial
\( x^{16} - 4 x^{15} - 95 x^{14} + 104 x^{13} + 305 x^{12} - 8752 x^{11} + 3656 x^{10} + 13097 x^{9} - 38030 x^{8} - 90245 x^{7} + 526043 x^{6} + 747363 x^{5} - 510408 x^{4} - 2183884 x^{3} - 3919178 x^{2} + 8942321 x - 3392863 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3502535855067952407242642672315293971641=41^{15}\cdot 83^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $296.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{37} a^{14} - \frac{11}{37} a^{13} + \frac{5}{37} a^{12} + \frac{1}{37} a^{11} + \frac{6}{37} a^{10} - \frac{2}{37} a^{9} - \frac{3}{37} a^{8} + \frac{11}{37} a^{7} + \frac{8}{37} a^{6} + \frac{10}{37} a^{5} + \frac{17}{37} a^{4} - \frac{9}{37} a^{2} - \frac{7}{37} a$, $\frac{1}{8176573294021418854647214736725929919775474973335179} a^{15} + \frac{775582432095455029497812422655835068519204252350}{220988467405984293368843641533133241075012837117167} a^{14} + \frac{2536126760652802089987619384714223504726224064149574}{8176573294021418854647214736725929919775474973335179} a^{13} + \frac{2180720250777116005849712225661822200185796216799607}{8176573294021418854647214736725929919775474973335179} a^{12} - \frac{446694535364729824677457080305374163823634385530140}{8176573294021418854647214736725929919775474973335179} a^{11} + \frac{1816987212781960894293923227449362118541131258166344}{8176573294021418854647214736725929919775474973335179} a^{10} - \frac{3613915165053081178407335705558157662685155414524778}{8176573294021418854647214736725929919775474973335179} a^{9} - \frac{100807211419806538776973289244814426307409490164981}{8176573294021418854647214736725929919775474973335179} a^{8} + \frac{1888834949666332072779132766279039581801459651653756}{8176573294021418854647214736725929919775474973335179} a^{7} - \frac{3663773189502527246201525038425385501180370082828383}{8176573294021418854647214736725929919775474973335179} a^{6} + \frac{125092230150366564848727738951403627743727370726065}{8176573294021418854647214736725929919775474973335179} a^{5} - \frac{409733657025483745911784334620838690249536359565865}{8176573294021418854647214736725929919775474973335179} a^{4} - \frac{676475113378868523925583330250650744493243442504729}{8176573294021418854647214736725929919775474973335179} a^{3} + \frac{806260879027185507396231931344120213783271314999805}{8176573294021418854647214736725929919775474973335179} a^{2} - \frac{2032724374394757569217347376412580122008487512075934}{8176573294021418854647214736725929919775474973335179} a + \frac{59497782381747406135141241384890968958043947408221}{220988467405984293368843641533133241075012837117167}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 55152918821800 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).D_4$ (as 16T591):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $(C_2\times OD_{16}).D_4$ |
| Character table for $(C_2\times OD_{16}).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.9242710845966413801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{12}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| $83$ | 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |