Properties

Label 16.8.34888832870...0624.1
Degree $16$
Signature $[8, 4]$
Discriminant $2^{34}\cdot 7^{8}\cdot 137^{4}$
Root discriminant $39.48$
Ramified primes $2, 7, 137$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T969

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![576, 0, -2560, 0, 4528, 0, -3616, 0, 1084, 0, -16, 0, 1, 0, -10, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 10*x^14 + x^12 - 16*x^10 + 1084*x^8 - 3616*x^6 + 4528*x^4 - 2560*x^2 + 576)
 
gp: K = bnfinit(x^16 - 10*x^14 + x^12 - 16*x^10 + 1084*x^8 - 3616*x^6 + 4528*x^4 - 2560*x^2 + 576, 1)
 

Normalized defining polynomial

\( x^{16} - 10 x^{14} + x^{12} - 16 x^{10} + 1084 x^{8} - 3616 x^{6} + 4528 x^{4} - 2560 x^{2} + 576 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(34888832870078427770650624=2^{34}\cdot 7^{8}\cdot 137^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $39.48$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7, 137$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{6} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{8} - \frac{1}{8} a^{6} + \frac{1}{16} a^{4} + \frac{1}{4}$, $\frac{1}{16} a^{9} - \frac{1}{8} a^{7} + \frac{1}{16} a^{5} + \frac{1}{4} a$, $\frac{1}{64} a^{10} - \frac{1}{32} a^{9} + \frac{1}{16} a^{7} + \frac{5}{64} a^{6} - \frac{1}{32} a^{5} + \frac{5}{32} a^{4} + \frac{1}{16} a^{2} - \frac{1}{8} a - \frac{3}{8}$, $\frac{1}{64} a^{11} + \frac{5}{64} a^{7} - \frac{3}{32} a^{5} + \frac{5}{16} a^{3} + \frac{1}{8} a$, $\frac{1}{256} a^{12} - \frac{1}{128} a^{10} - \frac{3}{256} a^{8} + \frac{3}{32} a^{4} - \frac{1}{2} a^{3} - \frac{1}{8} a^{2} - \frac{1}{2} a + \frac{5}{16}$, $\frac{1}{512} a^{13} - \frac{1}{256} a^{11} - \frac{3}{512} a^{9} - \frac{1}{8} a^{7} + \frac{3}{64} a^{5} - \frac{3}{16} a^{3} - \frac{3}{32} a$, $\frac{1}{60416} a^{14} - \frac{15}{15104} a^{12} - \frac{303}{60416} a^{10} - \frac{457}{30208} a^{8} - \frac{465}{7552} a^{6} + \frac{543}{3776} a^{4} - \frac{1}{2} a^{3} + \frac{1217}{3776} a^{2} - \frac{1}{2} a - \frac{769}{1888}$, $\frac{1}{362496} a^{15} + \frac{11}{22656} a^{13} - \frac{1}{512} a^{12} - \frac{2663}{362496} a^{11} + \frac{1}{256} a^{10} + \frac{2965}{181248} a^{9} + \frac{3}{512} a^{8} + \frac{4019}{45312} a^{7} - \frac{1}{8} a^{6} - \frac{1699}{22656} a^{5} + \frac{13}{64} a^{4} + \frac{2161}{22656} a^{3} - \frac{5}{16} a^{2} - \frac{1595}{11328} a + \frac{3}{32}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 203010505.513 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T969:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 512
The 44 conjugacy class representatives for t16n969
Character table for t16n969 is not computed

Intermediate fields

\(\Q(\sqrt{7}) \), 4.4.107408.1, 8.4.369167310848.1, 8.4.1476669243392.1, 8.8.738334621696.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.6.8$x^{4} + 2 x^{3} + 2$$4$$1$$6$$D_{4}$$[2, 2]^{2}$
2.4.6.8$x^{4} + 2 x^{3} + 2$$4$$1$$6$$D_{4}$$[2, 2]^{2}$
2.8.22.113$x^{8} + 4 x^{7} + 10 x^{4} + 4 x^{2} + 2$$8$$1$$22$$C_2^2 \wr C_2$$[2, 2, 3, 7/2]^{2}$
$7$7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$137$137.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
137.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
137.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
137.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
137.4.2.1$x^{4} + 1507 x^{2} + 675684$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
137.4.2.1$x^{4} + 1507 x^{2} + 675684$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$