Normalized defining polynomial
\( x^{16} - 6 x^{14} - 12 x^{13} - 75 x^{12} - 288 x^{11} - 652 x^{10} - 1212 x^{9} - 2379 x^{8} - 2784 x^{7} + 1884 x^{6} + 7560 x^{5} + 4084 x^{4} - 2544 x^{3} - 2880 x^{2} - 864 x - 72 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3479315915610802970689536=2^{38}\cdot 3^{10}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{6} a^{11} - \frac{1}{3} a^{9} - \frac{1}{2} a^{7} - \frac{1}{3} a^{5} + \frac{1}{6} a^{3}$, $\frac{1}{66} a^{12} - \frac{5}{66} a^{11} - \frac{1}{33} a^{10} - \frac{13}{33} a^{9} - \frac{3}{22} a^{8} + \frac{5}{22} a^{7} + \frac{14}{33} a^{6} - \frac{16}{33} a^{5} - \frac{29}{66} a^{4} + \frac{19}{66} a^{3} + \frac{3}{11} a^{2} + \frac{3}{11} a - \frac{4}{11}$, $\frac{1}{66} a^{13} - \frac{5}{66} a^{11} + \frac{4}{33} a^{10} + \frac{5}{22} a^{9} + \frac{7}{33} a^{8} - \frac{29}{66} a^{7} - \frac{4}{11} a^{6} + \frac{31}{66} a^{5} - \frac{8}{33} a^{4} + \frac{1}{22} a^{3} + \frac{10}{33} a^{2} + \frac{2}{11}$, $\frac{1}{660} a^{14} - \frac{1}{330} a^{13} + \frac{1}{165} a^{11} + \frac{7}{60} a^{10} - \frac{39}{110} a^{9} + \frac{25}{66} a^{8} - \frac{16}{33} a^{7} + \frac{7}{220} a^{6} - \frac{163}{330} a^{5} - \frac{1}{30} a^{4} + \frac{21}{55} a^{3} - \frac{27}{55} a^{2} + \frac{14}{55} a - \frac{12}{55}$, $\frac{1}{26835431761182660} a^{15} + \frac{106830731607}{447257196019711} a^{14} - \frac{72609709203457}{13417715880591330} a^{13} - \frac{489536265553}{638938851456730} a^{12} - \frac{133759971180431}{5367086352236532} a^{11} + \frac{206328281781905}{1341771588059133} a^{10} - \frac{39962107528659}{2236285980098555} a^{9} + \frac{116062676942197}{2683543176118266} a^{8} + \frac{1606535940577201}{26835431761182660} a^{7} - \frac{69791626268082}{203298725463505} a^{6} - \frac{3247306337174236}{6708857940295665} a^{5} - \frac{4250063662405741}{13417715880591330} a^{4} - \frac{10456822305458}{21996255541953} a^{3} + \frac{271932003936077}{1341771588059133} a^{2} + \frac{633966531425441}{2236285980098555} a - \frac{191671118361554}{2236285980098555}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5932651.45643 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_2^2$ (as 16T127):
| A solvable group of order 64 |
| The 16 conjugacy class representatives for $C_2\wr C_2^2$ |
| Character table for $C_2\wr C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.83 | $x^{8} + 4 x^{7} + 2 x^{4} + 4 x^{2} + 14$ | $8$ | $1$ | $22$ | $D_4$ | $[2, 3, 7/2]$ |
| 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |