Normalized defining polynomial
\( x^{16} - x^{15} + x^{14} - 18 x^{13} - 84 x^{12} + 118 x^{11} + 324 x^{10} + 985 x^{9} - 526 x^{8} - 6172 x^{7} - 1699 x^{6} + 10250 x^{5} + 14400 x^{4} - 15760 x^{3} - 20314 x^{2} + 18495 x + 8263 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(34685013449866033007282273=17^{15}\cdot 59^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{10847} a^{14} - \frac{4617}{10847} a^{13} - \frac{1235}{10847} a^{12} - \frac{1017}{10847} a^{11} - \frac{4615}{10847} a^{10} - \frac{2343}{10847} a^{9} - \frac{3837}{10847} a^{8} - \frac{2273}{10847} a^{7} - \frac{1356}{10847} a^{6} + \frac{914}{10847} a^{5} - \frac{15}{10847} a^{4} - \frac{4864}{10847} a^{3} - \frac{2371}{10847} a^{2} + \frac{482}{10847} a + \frac{1629}{10847}$, $\frac{1}{23066687042377216878374326477} a^{15} - \frac{907710944878488712988529}{23066687042377216878374326477} a^{14} + \frac{9902867254714521246335289779}{23066687042377216878374326477} a^{13} + \frac{5922616941654691369506466432}{23066687042377216878374326477} a^{12} - \frac{9710969246857321050997772932}{23066687042377216878374326477} a^{11} + \frac{587354455994741435999188293}{23066687042377216878374326477} a^{10} - \frac{4939423261427355964220622912}{23066687042377216878374326477} a^{9} - \frac{10011299109976230411961139432}{23066687042377216878374326477} a^{8} + \frac{8395861194049699040593603752}{23066687042377216878374326477} a^{7} - \frac{6377314445417707664551068229}{23066687042377216878374326477} a^{6} - \frac{6870531177674674029222107084}{23066687042377216878374326477} a^{5} - \frac{8976823118028577038633002487}{23066687042377216878374326477} a^{4} - \frac{8495547933487166287463515760}{23066687042377216878374326477} a^{3} - \frac{6879310562091791135995319415}{23066687042377216878374326477} a^{2} - \frac{8057752745861026680904674289}{23066687042377216878374326477} a + \frac{10666646382477627374711399322}{23066687042377216878374326477}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4436153.77262 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $59$ | 59.8.0.1 | $x^{8} - x + 14$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 59.8.4.2 | $x^{8} - 205379 x^{2} + 169643054$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |