Normalized defining polynomial
\( x^{16} - 20 x^{14} - 60 x^{13} - 280 x^{12} - 440 x^{11} + 2840 x^{10} + 16220 x^{9} + 41485 x^{8} + 53840 x^{7} + 24200 x^{6} - 14580 x^{5} - 23030 x^{4} + 18240 x^{3} + 28920 x^{2} - 40480 x - 9595 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(34571164844032000000000000000=2^{40}\cdot 5^{15}\cdot 101^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{518913247415197779061876589850812974279} a^{15} + \frac{89650501352616622052302624241565469714}{518913247415197779061876589850812974279} a^{14} - \frac{211253114750667609493573269386339530079}{518913247415197779061876589850812974279} a^{13} + \frac{105902121567809793530829274076364360322}{518913247415197779061876589850812974279} a^{12} + \frac{135698971360910205795043726046085181190}{518913247415197779061876589850812974279} a^{11} + \frac{144945375058916428873449255381269371677}{518913247415197779061876589850812974279} a^{10} + \frac{180008289380264643712568524867503553963}{518913247415197779061876589850812974279} a^{9} + \frac{25113999015195882629907432302495592026}{518913247415197779061876589850812974279} a^{8} - \frac{181190251372778615145230224444147606917}{518913247415197779061876589850812974279} a^{7} + \frac{12563896140965525508042238290259099481}{518913247415197779061876589850812974279} a^{6} - \frac{258472360627026049184444494472335890855}{518913247415197779061876589850812974279} a^{5} + \frac{45210237031107674330744053285999107682}{518913247415197779061876589850812974279} a^{4} + \frac{144403069829372943457583381449446829123}{518913247415197779061876589850812974279} a^{3} + \frac{31312939210950154249275430199524776334}{518913247415197779061876589850812974279} a^{2} - \frac{197895518035676812613464407301988980879}{518913247415197779061876589850812974279} a + \frac{60340311090899877412563690534988003532}{518913247415197779061876589850812974279}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 378503900.238 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 73 conjugacy class representatives for t16n1604 are not computed |
| Character table for t16n1604 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 8.8.5120000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | $16$ | $16$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $101$ | $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.4.2.2 | $x^{4} - 101 x^{2} + 30603$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 101.4.0.1 | $x^{4} - x + 12$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |