Normalized defining polynomial
\( x^{16} - x^{15} - 66 x^{14} - 3 x^{13} + 2135 x^{12} + 1730 x^{11} - 42649 x^{10} - 54891 x^{9} + 628982 x^{8} + 856419 x^{7} - 6975475 x^{6} - 7089206 x^{5} + 49136920 x^{4} + 28122920 x^{3} - 178366000 x^{2} - 42093568 x + 245954816 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(344870040917968360157170212631249=41^{4}\cdot 73^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $108.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{1}{8} a^{6} + \frac{1}{16} a^{5} - \frac{3}{16} a^{4}$, $\frac{1}{96} a^{12} - \frac{1}{48} a^{11} - \frac{5}{96} a^{10} - \frac{1}{8} a^{9} - \frac{5}{48} a^{8} - \frac{1}{48} a^{7} - \frac{17}{96} a^{6} - \frac{1}{24} a^{5} + \frac{23}{96} a^{4} - \frac{3}{8} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{3}$, $\frac{1}{96} a^{13} - \frac{1}{32} a^{11} - \frac{1}{24} a^{10} + \frac{1}{48} a^{9} - \frac{5}{48} a^{8} + \frac{1}{32} a^{7} + \frac{11}{48} a^{6} + \frac{7}{32} a^{5} + \frac{1}{6} a^{4} - \frac{1}{2} a^{2} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{96} a^{14} + \frac{1}{48} a^{11} - \frac{1}{96} a^{10} + \frac{1}{48} a^{9} - \frac{1}{32} a^{8} + \frac{1}{6} a^{7} - \frac{1}{16} a^{6} + \frac{1}{6} a^{5} + \frac{3}{32} a^{4} - \frac{3}{8} a^{3} - \frac{5}{12} a^{2} - \frac{1}{12} a$, $\frac{1}{134704227350182306455646881779102508103535616} a^{15} + \frac{132371009088242115733127167019986492868161}{44901409116727435485215627259700836034511872} a^{14} + \frac{207491515119651770528291575318875261752677}{67352113675091153227823440889551254051767808} a^{13} - \frac{617713729300104983379101864914549195797851}{134704227350182306455646881779102508103535616} a^{12} - \frac{3411584745158012880226528481708146112356949}{134704227350182306455646881779102508103535616} a^{11} + \frac{224604931723889123005036918735611463150903}{67352113675091153227823440889551254051767808} a^{10} + \frac{48148257459341799429550284090447248954039}{1513530644384070859052212154821376495545344} a^{9} - \frac{2926259125145335990489840898790542032853477}{44901409116727435485215627259700836034511872} a^{8} - \frac{12743491809918868988037485743878636532608611}{67352113675091153227823440889551254051767808} a^{7} + \frac{31051013152249854199197314851571159846010059}{134704227350182306455646881779102508103535616} a^{6} - \frac{28858027048962338515669082001836440569473927}{134704227350182306455646881779102508103535616} a^{5} + \frac{3464729913510602007759002906233070483966109}{22450704558363717742607813629850418017255936} a^{4} + \frac{1521318428693900614102783813528117846231829}{8419014209386394153477930111193906756470976} a^{3} + \frac{6515839123311960578910393541662567308019245}{16838028418772788306955860222387813512941952} a^{2} - \frac{1513693750510970387203702721774558665703657}{8419014209386394153477930111193906756470976} a + \frac{349186419230557964901483366400116406505629}{701584517448866179456494175932825563039248}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 158755699378 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^5.C_2.C_2$ (as 16T257):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^5.C_2.C_2$ |
| Character table for $C_2^5.C_2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.389017.1, 8.8.18570676910602057.1, 8.4.452943339282977.1, 8.4.6204703277849.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| 73 | Data not computed | ||||||