Normalized defining polynomial
\( x^{16} - 6 x^{15} - 183 x^{14} + 679 x^{13} + 9311 x^{12} + 43276 x^{11} + 97932 x^{10} - 10403552 x^{9} - 8440783 x^{8} + 567915747 x^{7} - 854442249 x^{6} - 9305286587 x^{5} + 21874828800 x^{4} + 74315288244 x^{3} - 109960290119 x^{2} - 166367096959 x + 190692533519 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3441922301185419076541988280060619730761=19^{12}\cdot 41^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $295.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3707363878925230448788135063794017870082761160674528898609152666677261773889075282619} a^{15} + \frac{839730111389703137193523712487454649022288448626280858307926423769280010028049860267}{3707363878925230448788135063794017870082761160674528898609152666677261773889075282619} a^{14} + \frac{573842811815714074343479266532249882053966426128663302244118294735685605170326190392}{3707363878925230448788135063794017870082761160674528898609152666677261773889075282619} a^{13} - \frac{874951229695962959659421958793199983966952858006164363071638100497397098539488008264}{3707363878925230448788135063794017870082761160674528898609152666677261773889075282619} a^{12} + \frac{1570459037813203446064015116820793253250543884104288494120865034260292432024477653500}{3707363878925230448788135063794017870082761160674528898609152666677261773889075282619} a^{11} - \frac{1786379462853367356193091281107103993805184071332911702260707148507019311295049599699}{3707363878925230448788135063794017870082761160674528898609152666677261773889075282619} a^{10} - \frac{562896220281047098994227796645284431987070855240194725289059683350563782263100037960}{3707363878925230448788135063794017870082761160674528898609152666677261773889075282619} a^{9} - \frac{1572131516132636513768735198586823891791764437826488540584879717320925018754625698421}{3707363878925230448788135063794017870082761160674528898609152666677261773889075282619} a^{8} + \frac{1092109915456630513665558199876471665428150101265866521549653072334206444413542521950}{3707363878925230448788135063794017870082761160674528898609152666677261773889075282619} a^{7} + \frac{233761340311541926600925727125704067520593794844182226402649610188986609603622564120}{3707363878925230448788135063794017870082761160674528898609152666677261773889075282619} a^{6} - \frac{618661085629801407095671893841756001636432283979284113081261390865146617307031771168}{3707363878925230448788135063794017870082761160674528898609152666677261773889075282619} a^{5} + \frac{1563542090519971318099988550875043357389405470138738145962760352088809448266182931890}{3707363878925230448788135063794017870082761160674528898609152666677261773889075282619} a^{4} - \frac{526002215440108142090615597415695934067221734186735974507219910443430696295316302293}{3707363878925230448788135063794017870082761160674528898609152666677261773889075282619} a^{3} + \frac{899148935554510467767678820398813009398970794778858759552699595332631922002624289168}{3707363878925230448788135063794017870082761160674528898609152666677261773889075282619} a^{2} + \frac{677964049839088094006029601284053136281912230463937120173037107128529766493648510521}{3707363878925230448788135063794017870082761160674528898609152666677261773889075282619} a - \frac{466385134460623996455385900783029917628749275235256921207459933629119259216895117617}{3707363878925230448788135063794017870082761160674528898609152666677261773889075282619}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 48469270476700 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.25380571726445801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 19 | Data not computed | ||||||
| 41 | Data not computed | ||||||