Normalized defining polynomial
\( x^{16} - x^{15} + 130 x^{14} + 6156 x^{13} - 80382 x^{12} + 866668 x^{11} - 1885874 x^{10} - 108427352 x^{9} + 1612862067 x^{8} - 14155155281 x^{7} + 69586907661 x^{6} - 108889517130 x^{5} - 380843328948 x^{4} + 2008596388551 x^{3} - 1937686049708 x^{2} - 7126041807578 x + 1513355408767 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(341820520390299824133982419608164514148827929=37^{14}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $607.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{544703} a^{14} - \frac{210395}{544703} a^{13} - \frac{126160}{544703} a^{12} + \frac{72277}{544703} a^{11} - \frac{6981}{544703} a^{10} + \frac{39697}{544703} a^{9} + \frac{11997}{544703} a^{8} - \frac{254352}{544703} a^{7} - \frac{57583}{544703} a^{6} + \frac{104391}{544703} a^{5} - \frac{67600}{544703} a^{4} + \frac{94052}{544703} a^{3} - \frac{224175}{544703} a^{2} - \frac{232689}{544703} a - \frac{942}{4289}$, $\frac{1}{136599196472143003058424211956209182748143239061702850816577509345157031818129231111359726855137} a^{15} + \frac{11773036710466712048144294323229865979982993056320720200254215900376090515239385241310559}{136599196472143003058424211956209182748143239061702850816577509345157031818129231111359726855137} a^{14} + \frac{22344105819700595393521271006035037686062165976858097902557762711954174867802354542490966017390}{136599196472143003058424211956209182748143239061702850816577509345157031818129231111359726855137} a^{13} + \frac{65003983131677778034440111022739915240609506834502400498486222929092032626769830905536676537140}{136599196472143003058424211956209182748143239061702850816577509345157031818129231111359726855137} a^{12} + \frac{7200404296681833055313809173045561266736413397186125485841157562447540405410251286599666261319}{136599196472143003058424211956209182748143239061702850816577509345157031818129231111359726855137} a^{11} + \frac{22596630708205594463156863635082277949350987686770213243880207897844165070991784450659333544721}{136599196472143003058424211956209182748143239061702850816577509345157031818129231111359726855137} a^{10} - \frac{56314471191644304614222951626631923192384386625715883561740681730577197510831880527252443645565}{136599196472143003058424211956209182748143239061702850816577509345157031818129231111359726855137} a^{9} + \frac{27460646982488698140388631665705090468411473062982253565941728456847356445570679220823913723294}{136599196472143003058424211956209182748143239061702850816577509345157031818129231111359726855137} a^{8} - \frac{32488087493150521013917795605376361039459884843278248022116365894622642815281434700431772976008}{136599196472143003058424211956209182748143239061702850816577509345157031818129231111359726855137} a^{7} + \frac{58743001463550254797590644240490956905762580640118820025052753292625488577427021858286535084988}{136599196472143003058424211956209182748143239061702850816577509345157031818129231111359726855137} a^{6} + \frac{64914147790789970712108665762573978046860508754521080168598121061802823967384187791751407176021}{136599196472143003058424211956209182748143239061702850816577509345157031818129231111359726855137} a^{5} + \frac{38039796897715323861946123872711440776692194739317888445102035954300259964221655882894138424565}{136599196472143003058424211956209182748143239061702850816577509345157031818129231111359726855137} a^{4} + \frac{62593155367471070413081126427855109670245832582325158029792006664812997880930091536002438938519}{136599196472143003058424211956209182748143239061702850816577509345157031818129231111359726855137} a^{3} + \frac{13935712914041330344817539944149153438493849638106141851889346593034206594502153834545438992538}{136599196472143003058424211956209182748143239061702850816577509345157031818129231111359726855137} a^{2} + \frac{54897843419274725233651493576874494543956043227952357721170906486096158201655220592985880949003}{136599196472143003058424211956209182748143239061702850816577509345157031818129231111359726855137} a + \frac{377757976644780886059983174603904339081648488753998079817652438513350473375814287995328617120}{1075584224190102386286804818552828210615301094974038195406122120828008124552198670168186825631}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3571872252400000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{1517}) \), \(\Q(\sqrt{41}) \), \(\Q(\sqrt{37}) \), \(\Q(\sqrt{37}, \sqrt{41})\), 8.8.12187467896636600569.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.8.7.1 | $x^{8} - 37$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 37.8.7.1 | $x^{8} - 37$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $41$ | 41.8.7.2 | $x^{8} - 1476$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.2 | $x^{8} - 1476$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |