Normalized defining polynomial
\( x^{16} - 389 x^{14} - 6068 x^{13} - 191213 x^{12} - 2073739 x^{11} - 14781949 x^{10} - 92178988 x^{9} - 31765557 x^{8} + 1085395296 x^{7} - 2811627137 x^{6} - 1928515073 x^{5} + 43477867525 x^{4} - 24006418810 x^{3} - 151944870564 x^{2} + 74815544047 x + 180850298131 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(341820520390299824133982419608164514148827929=37^{14}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $607.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{127} a^{14} - \frac{42}{127} a^{13} + \frac{16}{127} a^{12} + \frac{46}{127} a^{11} - \frac{5}{127} a^{10} - \frac{30}{127} a^{9} + \frac{16}{127} a^{8} - \frac{9}{127} a^{7} + \frac{34}{127} a^{6} - \frac{36}{127} a^{5} - \frac{35}{127} a^{4} - \frac{32}{127} a^{3} - \frac{39}{127} a^{2} - \frac{56}{127} a + \frac{25}{127}$, $\frac{1}{224267328422376162840502179197171556477367700229714728766009514961555764166398427967447974239} a^{15} + \frac{678801597855405477520990073548138472499017224717420125105042472655831188524653659389618377}{224267328422376162840502179197171556477367700229714728766009514961555764166398427967447974239} a^{14} - \frac{71937186829713111039492795898838490064541960248403623334183362675713941923069750028715292009}{224267328422376162840502179197171556477367700229714728766009514961555764166398427967447974239} a^{13} - \frac{38478817513589416136508814207961001157149014869891218207447075597173871888653409411724511994}{224267328422376162840502179197171556477367700229714728766009514961555764166398427967447974239} a^{12} - \frac{17730658881007591496923587457959842378681024608298019139988360631595118731720110811208133171}{224267328422376162840502179197171556477367700229714728766009514961555764166398427967447974239} a^{11} - \frac{74514480283955916199149095547121082505260089889952879385957200479677449795508778411993350581}{224267328422376162840502179197171556477367700229714728766009514961555764166398427967447974239} a^{10} + \frac{44873070666244054295007274347052973598456869350997151676340455991163136915464568440978317378}{224267328422376162840502179197171556477367700229714728766009514961555764166398427967447974239} a^{9} - \frac{541437421252366623903858057445149852946953729173725837123280291909723114613417706182043498}{1765884475766741439688993536985602806908407088422950620204799330405950898948019117853921057} a^{8} + \frac{101758894171631611745497950505021148366814222349734092929708191201050223405491042916264309457}{224267328422376162840502179197171556477367700229714728766009514961555764166398427967447974239} a^{7} + \frac{57162824916676611631350308801531595228819764998705266692196869458288632631399640821570377730}{224267328422376162840502179197171556477367700229714728766009514961555764166398427967447974239} a^{6} - \frac{87320676666362717743075923832436100273237484801063058220940854565764030763448873261592158907}{224267328422376162840502179197171556477367700229714728766009514961555764166398427967447974239} a^{5} + \frac{89674104243994778484805225406618620045932773685351743329237041300173641855467329516619567673}{224267328422376162840502179197171556477367700229714728766009514961555764166398427967447974239} a^{4} + \frac{6220470941218798633942346170188484173505872105134391876210140570715526866826109239586237900}{224267328422376162840502179197171556477367700229714728766009514961555764166398427967447974239} a^{3} - \frac{44982039201135142166735483534573336326983969045839966424479167833921034016756786618821672016}{224267328422376162840502179197171556477367700229714728766009514961555764166398427967447974239} a^{2} - \frac{56674502655715789416391568635836230690695812920584771394906734743470409988468544927978197017}{224267328422376162840502179197171556477367700229714728766009514961555764166398427967447974239} a - \frac{64876289229875391044787248175777343460949253430467195823283291609465996999805981653610860545}{224267328422376162840502179197171556477367700229714728766009514961555764166398427967447974239}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3876120808100000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), \(\Q(\sqrt{1517}) \), \(\Q(\sqrt{37}) \), \(\Q(\sqrt{37}, \sqrt{41})\), 8.8.12187467896636600569.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.8.7.1 | $x^{8} - 37$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 37.8.7.1 | $x^{8} - 37$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $41$ | 41.8.7.4 | $x^{8} - 1912896$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.2 | $x^{8} - 1476$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |