Normalized defining polynomial
\( x^{16} - 4 x^{15} - 13 x^{14} + 63 x^{13} - 7321 x^{12} + 59103 x^{11} - 115080 x^{10} - 772381 x^{9} + 10492820 x^{8} - 29022674 x^{7} - 5402229 x^{6} + 113723601 x^{5} - 384839693 x^{4} + 1250599119 x^{3} - 10796424454 x^{2} + 23032733237 x + 3644035361 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(341820520390299824133982419608164514148827929=37^{14}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $607.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{41} a^{8} - \frac{2}{41} a^{7} + \frac{12}{41} a^{6} - \frac{6}{41} a^{5} + \frac{7}{41} a^{4} + \frac{15}{41} a^{3} - \frac{7}{41} a^{2} - \frac{20}{41} a + \frac{16}{41}$, $\frac{1}{82} a^{9} - \frac{1}{82} a^{8} - \frac{31}{82} a^{7} + \frac{3}{41} a^{6} - \frac{20}{41} a^{5} + \frac{11}{41} a^{4} - \frac{33}{82} a^{3} - \frac{27}{82} a^{2} - \frac{2}{41} a - \frac{25}{82}$, $\frac{1}{164} a^{10} - \frac{1}{82} a^{8} + \frac{79}{164} a^{7} - \frac{1}{82} a^{6} + \frac{12}{41} a^{5} - \frac{47}{164} a^{4} + \frac{31}{82} a^{3} - \frac{77}{164} a^{2} + \frac{27}{164} a - \frac{37}{164}$, $\frac{1}{27224} a^{11} + \frac{71}{27224} a^{10} - \frac{81}{13612} a^{9} + \frac{201}{27224} a^{8} + \frac{7899}{27224} a^{7} - \frac{5725}{13612} a^{6} - \frac{11691}{27224} a^{5} + \frac{10333}{27224} a^{4} + \frac{6245}{27224} a^{3} + \frac{466}{3403} a^{2} + \frac{1121}{3403} a - \frac{9919}{27224}$, $\frac{1}{108896} a^{12} + \frac{109}{108896} a^{10} + \frac{5}{1312} a^{9} - \frac{265}{27224} a^{8} + \frac{24657}{108896} a^{7} - \frac{10813}{108896} a^{6} + \frac{10841}{54448} a^{5} + \frac{16109}{54448} a^{4} - \frac{22011}{108896} a^{3} + \frac{991}{6806} a^{2} - \frac{6551}{108896} a + \frac{20329}{108896}$, $\frac{1}{217792} a^{13} - \frac{1}{217792} a^{12} - \frac{3}{217792} a^{11} + \frac{161}{108896} a^{10} + \frac{733}{217792} a^{9} - \frac{2107}{217792} a^{8} + \frac{52529}{108896} a^{7} - \frac{58257}{217792} a^{6} + \frac{10611}{27224} a^{5} - \frac{13669}{217792} a^{4} + \frac{60859}{217792} a^{3} + \frac{67353}{217792} a^{2} - \frac{749}{3403} a + \frac{20231}{217792}$, $\frac{1}{188607872} a^{14} - \frac{135}{94303936} a^{13} + \frac{97}{94303936} a^{12} - \frac{119}{188607872} a^{11} - \frac{22981}{188607872} a^{10} - \frac{236491}{47151968} a^{9} + \frac{2053729}{188607872} a^{8} - \frac{18427891}{188607872} a^{7} + \frac{60858205}{188607872} a^{6} + \frac{45839859}{188607872} a^{5} - \frac{5182741}{47151968} a^{4} - \frac{8047895}{94303936} a^{3} - \frac{88458373}{188607872} a^{2} - \frac{28333441}{188607872} a + \frac{78794621}{188607872}$, $\frac{1}{79652801471184142837959762890273505763965901568} a^{15} + \frac{191786112433431192119637943623245107535}{79652801471184142837959762890273505763965901568} a^{14} + \frac{4167178741167260414513406154044296273909}{19913200367796035709489940722568376440991475392} a^{13} - \frac{318315188606069046042888060012130039517133}{79652801471184142837959762890273505763965901568} a^{12} + \frac{164908785510697229342977320157441721603841}{9956600183898017854744970361284188220495737696} a^{11} + \frac{778532104893489481393252423651093307170515}{1942751255394735191169750314396914774730875648} a^{10} + \frac{98552812470520499371222590089450418776013717}{79652801471184142837959762890273505763965901568} a^{9} + \frac{5284377761746474185112536468776866811464793}{39826400735592071418979881445136752881982950784} a^{8} + \frac{3129195077404529775498225885680312210932052031}{39826400735592071418979881445136752881982950784} a^{7} - \frac{5616704818946973084636931071138172210303631673}{19913200367796035709489940722568376440991475392} a^{6} - \frac{22183982574144395566064677887144549861947479709}{79652801471184142837959762890273505763965901568} a^{5} + \frac{7065984223740862212810541798273676033350867291}{39826400735592071418979881445136752881982950784} a^{4} - \frac{5986502718474419639531833913969669954148027723}{79652801471184142837959762890273505763965901568} a^{3} + \frac{8195697636586175166626269301229778817944630891}{39826400735592071418979881445136752881982950784} a^{2} - \frac{280049103822211190032111916511913187972132593}{9956600183898017854744970361284188220495737696} a - \frac{6117968340758329539777029976745877745176321447}{79652801471184142837959762890273505763965901568}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3132062581460000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{1517}) \), \(\Q(\sqrt{41}) \), \(\Q(\sqrt{37}) \), \(\Q(\sqrt{37}, \sqrt{41})\), 8.8.12187467896636600569.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.8.7.1 | $x^{8} - 37$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 37.8.7.1 | $x^{8} - 37$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $41$ | 41.8.7.2 | $x^{8} - 1476$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.4 | $x^{8} - 1912896$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |