Normalized defining polynomial
\( x^{16} - 3 x^{15} + 144 x^{14} - 4412 x^{13} - 65432 x^{12} - 728094 x^{11} - 1657428 x^{10} + 100353656 x^{9} + 999608855 x^{8} + 5120653975 x^{7} - 14134091903 x^{6} - 388988455119 x^{5} - 1924503835524 x^{4} - 2927083507477 x^{3} + 6015138745506 x^{2} + 20205755303303 x - 13163633135399 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(341820520390299824133982419608164514148827929=37^{14}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $607.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{7463757183387817044541646703290722889560498744136509177767099322173249314768200059019451198792776182629} a^{15} - \frac{1495279784688726930528397463516340410103579470114080483574211744187848044063904329064759743373448164811}{7463757183387817044541646703290722889560498744136509177767099322173249314768200059019451198792776182629} a^{14} + \frac{1566473349015877496542551540490398240959822778405728866284913697753344117801638888460509643333199630908}{7463757183387817044541646703290722889560498744136509177767099322173249314768200059019451198792776182629} a^{13} + \frac{3167118304801430406197678615762711690181907787051998808189018623208208604681790125105123809252871545738}{7463757183387817044541646703290722889560498744136509177767099322173249314768200059019451198792776182629} a^{12} + \frac{700448396279823990108457665328214809532694366166412430344412252918637458522434766531232237126810317699}{7463757183387817044541646703290722889560498744136509177767099322173249314768200059019451198792776182629} a^{11} - \frac{1295745600686477859847547982937245594164453798837469225359736818793229283743727567749613760186645834533}{7463757183387817044541646703290722889560498744136509177767099322173249314768200059019451198792776182629} a^{10} - \frac{3285376739541894689057404064500265531130013674087987361798835507603514054124999378922748317676590962826}{7463757183387817044541646703290722889560498744136509177767099322173249314768200059019451198792776182629} a^{9} - \frac{218302930049937905358486784326232000347160622016857570673327592421415512471057170699554379354804118398}{7463757183387817044541646703290722889560498744136509177767099322173249314768200059019451198792776182629} a^{8} + \frac{644385827957545870166555814511252845951344826078265096877803859225885163290592860793992972046970420937}{7463757183387817044541646703290722889560498744136509177767099322173249314768200059019451198792776182629} a^{7} - \frac{1707033858556410559881814345135431515902690610375343535665592862401876302637458112323207674842933972292}{7463757183387817044541646703290722889560498744136509177767099322173249314768200059019451198792776182629} a^{6} - \frac{3183325868020395505445453224194526005203960719994441090594024289647475743927356435567494500079238159382}{7463757183387817044541646703290722889560498744136509177767099322173249314768200059019451198792776182629} a^{5} + \frac{3006051843238457549750615160318581465876169273096821798894382116523003746973643171890671625770556217227}{7463757183387817044541646703290722889560498744136509177767099322173249314768200059019451198792776182629} a^{4} - \frac{3643428282596495333991836415501343330409594585172241962390831537731067932434426497146318449055617095959}{7463757183387817044541646703290722889560498744136509177767099322173249314768200059019451198792776182629} a^{3} - \frac{1345840080700376005989384907875305605450255067744613246621553074383603109330443028989100426932449883228}{7463757183387817044541646703290722889560498744136509177767099322173249314768200059019451198792776182629} a^{2} + \frac{168544011967580525222713021420981970468413714692864095935751173674230102913773477014869574578791279923}{7463757183387817044541646703290722889560498744136509177767099322173249314768200059019451198792776182629} a + \frac{1407345111594876800438619173401031553200747040603405291630630685750017963984604462986107332863900946831}{7463757183387817044541646703290722889560498744136509177767099322173249314768200059019451198792776182629}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3177119625570000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), \(\Q(\sqrt{1517}) \), \(\Q(\sqrt{37}) \), \(\Q(\sqrt{37}, \sqrt{41})\), 8.8.12187467896636600569.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.8.7.1 | $x^{8} - 37$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 37.8.7.1 | $x^{8} - 37$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $41$ | 41.8.7.4 | $x^{8} - 1912896$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.4 | $x^{8} - 1912896$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |