Normalized defining polynomial
\( x^{16} - 6 x^{15} + 4 x^{14} + 20 x^{13} - 17 x^{12} - 36 x^{11} + 90 x^{10} + 123 x^{9} - 338 x^{8} - 246 x^{7} + 275 x^{6} - 460 x^{5} - 1156 x^{4} + 329 x^{3} + 2432 x^{2} + 1703 x + 239 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3393001956715501807791409=17^{14}\cdot 67^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{34} a^{12} - \frac{2}{17} a^{11} - \frac{7}{17} a^{10} + \frac{7}{34} a^{9} + \frac{1}{17} a^{7} + \frac{7}{34} a^{6} - \frac{6}{17} a^{5} - \frac{3}{17} a^{4} - \frac{5}{34} a^{3} - \frac{7}{17} a^{2} + \frac{3}{17} a - \frac{1}{34}$, $\frac{1}{34} a^{13} + \frac{2}{17} a^{11} - \frac{15}{34} a^{10} - \frac{3}{17} a^{9} + \frac{1}{17} a^{8} + \frac{15}{34} a^{7} + \frac{8}{17} a^{6} + \frac{7}{17} a^{5} + \frac{5}{34} a^{4} - \frac{8}{17} a^{2} - \frac{11}{34} a - \frac{2}{17}$, $\frac{1}{578} a^{14} - \frac{5}{578} a^{13} + \frac{3}{578} a^{12} - \frac{201}{578} a^{11} + \frac{151}{578} a^{10} - \frac{43}{578} a^{9} - \frac{131}{578} a^{8} + \frac{75}{578} a^{7} - \frac{39}{578} a^{6} - \frac{19}{578} a^{5} - \frac{87}{578} a^{4} - \frac{249}{578} a^{3} + \frac{287}{578} a^{2} + \frac{147}{578} a + \frac{259}{578}$, $\frac{1}{288942302351889154} a^{15} + \frac{171478822231435}{288942302351889154} a^{14} + \frac{3151519680451579}{288942302351889154} a^{13} - \frac{4128485678849249}{288942302351889154} a^{12} + \frac{92133806861562363}{288942302351889154} a^{11} - \frac{114089918445495315}{288942302351889154} a^{10} - \frac{58974552593787043}{288942302351889154} a^{9} + \frac{104607012862586295}{288942302351889154} a^{8} + \frac{65545236091885341}{288942302351889154} a^{7} - \frac{67703460818297843}{288942302351889154} a^{6} - \frac{16573014598348807}{288942302351889154} a^{5} + \frac{7089117915650607}{288942302351889154} a^{4} + \frac{6964014217758423}{288942302351889154} a^{3} + \frac{4790302407337129}{288942302351889154} a^{2} + \frac{141718427107929371}{288942302351889154} a + \frac{64699839276119960}{144471151175944577}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1876695.80684 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T565):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| 67 | Data not computed | ||||||