Properties

Label 16.8.339...409.2
Degree $16$
Signature $[8, 4]$
Discriminant $3.393\times 10^{24}$
Root discriminant \(34.13\)
Ramified primes $17,67$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^2 : C_8$ (as 16T24)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^15 + 4*x^14 + 54*x^13 - 119*x^12 - 138*x^11 + 532*x^10 + 463*x^9 - 2582*x^8 + 196*x^7 + 8673*x^6 - 14128*x^5 - 2278*x^4 + 22735*x^3 - 14330*x^2 + 2077*x - 67)
 
gp: K = bnfinit(y^16 - 6*y^15 + 4*y^14 + 54*y^13 - 119*y^12 - 138*y^11 + 532*y^10 + 463*y^9 - 2582*y^8 + 196*y^7 + 8673*y^6 - 14128*y^5 - 2278*y^4 + 22735*y^3 - 14330*y^2 + 2077*y - 67, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 6*x^15 + 4*x^14 + 54*x^13 - 119*x^12 - 138*x^11 + 532*x^10 + 463*x^9 - 2582*x^8 + 196*x^7 + 8673*x^6 - 14128*x^5 - 2278*x^4 + 22735*x^3 - 14330*x^2 + 2077*x - 67);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 6*x^15 + 4*x^14 + 54*x^13 - 119*x^12 - 138*x^11 + 532*x^10 + 463*x^9 - 2582*x^8 + 196*x^7 + 8673*x^6 - 14128*x^5 - 2278*x^4 + 22735*x^3 - 14330*x^2 + 2077*x - 67)
 

\( x^{16} - 6 x^{15} + 4 x^{14} + 54 x^{13} - 119 x^{12} - 138 x^{11} + 532 x^{10} + 463 x^{9} - 2582 x^{8} + \cdots - 67 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[8, 4]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(3393001956715501807791409\) \(\medspace = 17^{14}\cdot 67^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(34.13\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $17^{7/8}67^{1/2}\approx 97.65178978680869$
Ramified primes:   \(17\), \(67\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $8$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{9}-\frac{1}{2}a^{6}-\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{10}-\frac{1}{2}a^{7}-\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{11}-\frac{1}{2}a^{8}-\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{67\!\cdots\!54}a^{15}+\frac{55\!\cdots\!47}{33\!\cdots\!27}a^{14}+\frac{12\!\cdots\!53}{67\!\cdots\!54}a^{13}-\frac{25\!\cdots\!97}{67\!\cdots\!54}a^{12}-\frac{10\!\cdots\!24}{33\!\cdots\!27}a^{11}+\frac{11\!\cdots\!33}{67\!\cdots\!54}a^{10}+\frac{29\!\cdots\!19}{67\!\cdots\!54}a^{9}-\frac{15\!\cdots\!29}{33\!\cdots\!27}a^{8}+\frac{18\!\cdots\!17}{67\!\cdots\!54}a^{7}-\frac{30\!\cdots\!15}{67\!\cdots\!54}a^{6}+\frac{10\!\cdots\!79}{33\!\cdots\!27}a^{5}+\frac{32\!\cdots\!71}{67\!\cdots\!54}a^{4}-\frac{20\!\cdots\!39}{67\!\cdots\!54}a^{3}-\frac{14\!\cdots\!75}{33\!\cdots\!27}a^{2}+\frac{20\!\cdots\!51}{67\!\cdots\!54}a-\frac{76\!\cdots\!31}{33\!\cdots\!27}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{12\!\cdots\!75}{67\!\cdots\!54}a^{15}-\frac{74\!\cdots\!47}{67\!\cdots\!54}a^{14}+\frac{47\!\cdots\!73}{67\!\cdots\!54}a^{13}+\frac{33\!\cdots\!18}{33\!\cdots\!27}a^{12}-\frac{14\!\cdots\!97}{67\!\cdots\!54}a^{11}-\frac{17\!\cdots\!73}{67\!\cdots\!54}a^{10}+\frac{33\!\cdots\!58}{33\!\cdots\!27}a^{9}+\frac{58\!\cdots\!85}{67\!\cdots\!54}a^{8}-\frac{32\!\cdots\!67}{67\!\cdots\!54}a^{7}+\frac{95\!\cdots\!28}{33\!\cdots\!27}a^{6}+\frac{10\!\cdots\!85}{67\!\cdots\!54}a^{5}-\frac{17\!\cdots\!87}{67\!\cdots\!54}a^{4}-\frac{18\!\cdots\!07}{33\!\cdots\!27}a^{3}+\frac{28\!\cdots\!61}{67\!\cdots\!54}a^{2}-\frac{16\!\cdots\!21}{67\!\cdots\!54}a+\frac{14\!\cdots\!97}{67\!\cdots\!54}$, $\frac{17\!\cdots\!09}{67\!\cdots\!54}a^{15}-\frac{52\!\cdots\!64}{33\!\cdots\!27}a^{14}+\frac{62\!\cdots\!55}{67\!\cdots\!54}a^{13}+\frac{48\!\cdots\!15}{33\!\cdots\!27}a^{12}-\frac{10\!\cdots\!53}{33\!\cdots\!27}a^{11}-\frac{26\!\cdots\!77}{67\!\cdots\!54}a^{10}+\frac{46\!\cdots\!62}{33\!\cdots\!27}a^{9}+\frac{45\!\cdots\!82}{33\!\cdots\!27}a^{8}-\frac{45\!\cdots\!87}{67\!\cdots\!54}a^{7}-\frac{36\!\cdots\!70}{33\!\cdots\!27}a^{6}+\frac{78\!\cdots\!75}{33\!\cdots\!27}a^{5}-\frac{23\!\cdots\!23}{67\!\cdots\!54}a^{4}-\frac{33\!\cdots\!66}{33\!\cdots\!27}a^{3}+\frac{20\!\cdots\!64}{33\!\cdots\!27}a^{2}-\frac{21\!\cdots\!25}{67\!\cdots\!54}a+\frac{17\!\cdots\!59}{67\!\cdots\!54}$, $\frac{41\!\cdots\!07}{67\!\cdots\!54}a^{15}-\frac{13\!\cdots\!24}{33\!\cdots\!27}a^{14}+\frac{28\!\cdots\!97}{67\!\cdots\!54}a^{13}+\frac{11\!\cdots\!35}{33\!\cdots\!27}a^{12}-\frac{31\!\cdots\!15}{33\!\cdots\!27}a^{11}-\frac{40\!\cdots\!31}{67\!\cdots\!54}a^{10}+\frac{13\!\cdots\!42}{33\!\cdots\!27}a^{9}+\frac{53\!\cdots\!87}{33\!\cdots\!27}a^{8}-\frac{12\!\cdots\!21}{67\!\cdots\!54}a^{7}+\frac{26\!\cdots\!70}{33\!\cdots\!27}a^{6}+\frac{19\!\cdots\!41}{33\!\cdots\!27}a^{5}-\frac{77\!\cdots\!09}{67\!\cdots\!54}a^{4}+\frac{50\!\cdots\!80}{33\!\cdots\!27}a^{3}+\frac{59\!\cdots\!25}{33\!\cdots\!27}a^{2}-\frac{10\!\cdots\!95}{67\!\cdots\!54}a+\frac{15\!\cdots\!53}{67\!\cdots\!54}$, $\frac{59\!\cdots\!01}{33\!\cdots\!27}a^{15}-\frac{72\!\cdots\!09}{67\!\cdots\!54}a^{14}+\frac{27\!\cdots\!50}{33\!\cdots\!27}a^{13}+\frac{32\!\cdots\!57}{33\!\cdots\!27}a^{12}-\frac{14\!\cdots\!65}{67\!\cdots\!54}a^{11}-\frac{75\!\cdots\!82}{33\!\cdots\!27}a^{10}+\frac{33\!\cdots\!43}{33\!\cdots\!27}a^{9}+\frac{48\!\cdots\!97}{67\!\cdots\!54}a^{8}-\frac{15\!\cdots\!81}{33\!\cdots\!27}a^{7}+\frac{28\!\cdots\!91}{33\!\cdots\!27}a^{6}+\frac{10\!\cdots\!95}{67\!\cdots\!54}a^{5}-\frac{90\!\cdots\!29}{33\!\cdots\!27}a^{4}-\frac{68\!\cdots\!93}{33\!\cdots\!27}a^{3}+\frac{28\!\cdots\!09}{67\!\cdots\!54}a^{2}-\frac{98\!\cdots\!61}{33\!\cdots\!27}a+\frac{74\!\cdots\!38}{33\!\cdots\!27}$, $\frac{60\!\cdots\!73}{67\!\cdots\!54}a^{15}-\frac{83\!\cdots\!69}{33\!\cdots\!27}a^{14}-\frac{78\!\cdots\!27}{67\!\cdots\!54}a^{13}+\frac{16\!\cdots\!61}{33\!\cdots\!27}a^{12}+\frac{15\!\cdots\!34}{33\!\cdots\!27}a^{11}-\frac{24\!\cdots\!09}{67\!\cdots\!54}a^{10}-\frac{12\!\cdots\!85}{33\!\cdots\!27}a^{9}+\frac{51\!\cdots\!44}{33\!\cdots\!27}a^{8}-\frac{33\!\cdots\!05}{67\!\cdots\!54}a^{7}-\frac{19\!\cdots\!63}{33\!\cdots\!27}a^{6}+\frac{19\!\cdots\!95}{33\!\cdots\!27}a^{5}+\frac{67\!\cdots\!71}{67\!\cdots\!54}a^{4}-\frac{11\!\cdots\!14}{33\!\cdots\!27}a^{3}-\frac{11\!\cdots\!24}{33\!\cdots\!27}a^{2}+\frac{30\!\cdots\!01}{67\!\cdots\!54}a-\frac{70\!\cdots\!33}{67\!\cdots\!54}$, $\frac{26\!\cdots\!49}{67\!\cdots\!54}a^{15}-\frac{71\!\cdots\!18}{33\!\cdots\!27}a^{14}+\frac{20\!\cdots\!49}{67\!\cdots\!54}a^{13}+\frac{70\!\cdots\!98}{33\!\cdots\!27}a^{12}-\frac{11\!\cdots\!77}{33\!\cdots\!27}a^{11}-\frac{47\!\cdots\!45}{67\!\cdots\!54}a^{10}+\frac{51\!\cdots\!66}{33\!\cdots\!27}a^{9}+\frac{90\!\cdots\!65}{33\!\cdots\!27}a^{8}-\frac{53\!\cdots\!69}{67\!\cdots\!54}a^{7}-\frac{13\!\cdots\!54}{33\!\cdots\!27}a^{6}+\frac{98\!\cdots\!94}{33\!\cdots\!27}a^{5}-\frac{24\!\cdots\!17}{67\!\cdots\!54}a^{4}-\frac{91\!\cdots\!49}{33\!\cdots\!27}a^{3}+\frac{20\!\cdots\!44}{33\!\cdots\!27}a^{2}-\frac{10\!\cdots\!01}{67\!\cdots\!54}a+\frac{31\!\cdots\!09}{67\!\cdots\!54}$, $\frac{36\!\cdots\!61}{33\!\cdots\!27}a^{15}-\frac{43\!\cdots\!35}{67\!\cdots\!54}a^{14}+\frac{12\!\cdots\!55}{33\!\cdots\!27}a^{13}+\frac{19\!\cdots\!21}{33\!\cdots\!27}a^{12}-\frac{83\!\cdots\!35}{67\!\cdots\!54}a^{11}-\frac{55\!\cdots\!14}{33\!\cdots\!27}a^{10}+\frac{19\!\cdots\!16}{33\!\cdots\!27}a^{9}+\frac{37\!\cdots\!99}{67\!\cdots\!54}a^{8}-\frac{93\!\cdots\!44}{33\!\cdots\!27}a^{7}-\frac{29\!\cdots\!90}{33\!\cdots\!27}a^{6}+\frac{63\!\cdots\!03}{67\!\cdots\!54}a^{5}-\frac{48\!\cdots\!95}{33\!\cdots\!27}a^{4}-\frac{12\!\cdots\!81}{33\!\cdots\!27}a^{3}+\frac{17\!\cdots\!25}{67\!\cdots\!54}a^{2}-\frac{45\!\cdots\!86}{33\!\cdots\!27}a+\frac{11\!\cdots\!14}{33\!\cdots\!27}$, $\frac{27\!\cdots\!82}{33\!\cdots\!27}a^{15}-\frac{15\!\cdots\!95}{33\!\cdots\!27}a^{14}+\frac{21\!\cdots\!81}{33\!\cdots\!27}a^{13}+\frac{15\!\cdots\!10}{33\!\cdots\!27}a^{12}-\frac{23\!\cdots\!68}{33\!\cdots\!27}a^{11}-\frac{52\!\cdots\!39}{33\!\cdots\!27}a^{10}+\frac{11\!\cdots\!87}{33\!\cdots\!27}a^{9}+\frac{19\!\cdots\!49}{33\!\cdots\!27}a^{8}-\frac{59\!\cdots\!04}{33\!\cdots\!27}a^{7}-\frac{30\!\cdots\!25}{33\!\cdots\!27}a^{6}+\frac{22\!\cdots\!69}{33\!\cdots\!27}a^{5}-\frac{25\!\cdots\!87}{33\!\cdots\!27}a^{4}-\frac{21\!\cdots\!77}{33\!\cdots\!27}a^{3}+\frac{49\!\cdots\!70}{33\!\cdots\!27}a^{2}-\frac{98\!\cdots\!34}{33\!\cdots\!27}a+\frac{44\!\cdots\!97}{33\!\cdots\!27}$, $\frac{16\!\cdots\!87}{33\!\cdots\!27}a^{15}-\frac{93\!\cdots\!11}{33\!\cdots\!27}a^{14}+\frac{44\!\cdots\!46}{33\!\cdots\!27}a^{13}+\frac{88\!\cdots\!05}{33\!\cdots\!27}a^{12}-\frac{17\!\cdots\!68}{33\!\cdots\!27}a^{11}-\frac{26\!\cdots\!53}{33\!\cdots\!27}a^{10}+\frac{82\!\cdots\!03}{33\!\cdots\!27}a^{9}+\frac{89\!\cdots\!79}{33\!\cdots\!27}a^{8}-\frac{40\!\cdots\!91}{33\!\cdots\!27}a^{7}-\frac{47\!\cdots\!54}{33\!\cdots\!27}a^{6}+\frac{14\!\cdots\!37}{33\!\cdots\!27}a^{5}-\frac{20\!\cdots\!31}{33\!\cdots\!27}a^{4}-\frac{81\!\cdots\!73}{33\!\cdots\!27}a^{3}+\frac{37\!\cdots\!92}{33\!\cdots\!27}a^{2}-\frac{18\!\cdots\!50}{33\!\cdots\!27}a+\frac{73\!\cdots\!17}{33\!\cdots\!27}$, $\frac{14\!\cdots\!47}{33\!\cdots\!27}a^{15}-\frac{73\!\cdots\!05}{33\!\cdots\!27}a^{14}+\frac{64\!\cdots\!42}{33\!\cdots\!27}a^{13}+\frac{74\!\cdots\!12}{33\!\cdots\!27}a^{12}-\frac{10\!\cdots\!88}{33\!\cdots\!27}a^{11}-\frac{27\!\cdots\!20}{33\!\cdots\!27}a^{10}+\frac{46\!\cdots\!82}{33\!\cdots\!27}a^{9}+\frac{11\!\cdots\!23}{33\!\cdots\!27}a^{8}-\frac{26\!\cdots\!32}{33\!\cdots\!27}a^{7}-\frac{20\!\cdots\!84}{33\!\cdots\!27}a^{6}+\frac{97\!\cdots\!45}{33\!\cdots\!27}a^{5}-\frac{10\!\cdots\!38}{33\!\cdots\!27}a^{4}-\frac{10\!\cdots\!26}{33\!\cdots\!27}a^{3}+\frac{15\!\cdots\!49}{33\!\cdots\!27}a^{2}+\frac{50\!\cdots\!68}{33\!\cdots\!27}a+\frac{51\!\cdots\!32}{33\!\cdots\!27}$, $\frac{10\!\cdots\!98}{33\!\cdots\!27}a^{15}-\frac{12\!\cdots\!83}{67\!\cdots\!54}a^{14}+\frac{47\!\cdots\!59}{33\!\cdots\!27}a^{13}+\frac{56\!\cdots\!52}{33\!\cdots\!27}a^{12}-\frac{26\!\cdots\!81}{67\!\cdots\!54}a^{11}-\frac{13\!\cdots\!13}{33\!\cdots\!27}a^{10}+\frac{58\!\cdots\!88}{33\!\cdots\!27}a^{9}+\frac{90\!\cdots\!75}{67\!\cdots\!54}a^{8}-\frac{28\!\cdots\!89}{33\!\cdots\!27}a^{7}+\frac{38\!\cdots\!64}{33\!\cdots\!27}a^{6}+\frac{18\!\cdots\!75}{67\!\cdots\!54}a^{5}-\frac{15\!\cdots\!59}{33\!\cdots\!27}a^{4}-\frac{21\!\cdots\!85}{33\!\cdots\!27}a^{3}+\frac{51\!\cdots\!13}{67\!\cdots\!54}a^{2}-\frac{15\!\cdots\!55}{33\!\cdots\!27}a+\frac{66\!\cdots\!73}{33\!\cdots\!27}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1961937.73949 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 1961937.73949 \cdot 1}{2\cdot\sqrt{3393001956715501807791409}}\cr\approx \mathstrut & 0.212482226907 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^15 + 4*x^14 + 54*x^13 - 119*x^12 - 138*x^11 + 532*x^10 + 463*x^9 - 2582*x^8 + 196*x^7 + 8673*x^6 - 14128*x^5 - 2278*x^4 + 22735*x^3 - 14330*x^2 + 2077*x - 67)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 - 6*x^15 + 4*x^14 + 54*x^13 - 119*x^12 - 138*x^11 + 532*x^10 + 463*x^9 - 2582*x^8 + 196*x^7 + 8673*x^6 - 14128*x^5 - 2278*x^4 + 22735*x^3 - 14330*x^2 + 2077*x - 67, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 - 6*x^15 + 4*x^14 + 54*x^13 - 119*x^12 - 138*x^11 + 532*x^10 + 463*x^9 - 2582*x^8 + 196*x^7 + 8673*x^6 - 14128*x^5 - 2278*x^4 + 22735*x^3 - 14330*x^2 + 2077*x - 67);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 6*x^15 + 4*x^14 + 54*x^13 - 119*x^12 - 138*x^11 + 532*x^10 + 463*x^9 - 2582*x^8 + 196*x^7 + 8673*x^6 - 14128*x^5 - 2278*x^4 + 22735*x^3 - 14330*x^2 + 2077*x - 67);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^2:C_8$ (as 16T24):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 32
The 20 conjugacy class representatives for $C_2^2 : C_8$
Character table for $C_2^2 : C_8$

Intermediate fields

\(\Q(\sqrt{17}) \), 4.2.329171.1, 4.4.4913.1, 4.2.19363.1, 8.4.1842010303097.2, \(\Q(\zeta_{17})^+\), 8.4.108353547241.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 32
Degree 16 sibling: 16.0.68372792983010839504523425519489.14
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.4.0.1}{4} }^{4}$ ${\href{/padicField/3.8.0.1}{8} }^{2}$ ${\href{/padicField/5.8.0.1}{8} }^{2}$ ${\href{/padicField/7.8.0.1}{8} }^{2}$ ${\href{/padicField/11.8.0.1}{8} }^{2}$ ${\href{/padicField/13.2.0.1}{2} }^{8}$ R ${\href{/padicField/19.4.0.1}{4} }^{4}$ ${\href{/padicField/23.8.0.1}{8} }^{2}$ ${\href{/padicField/29.8.0.1}{8} }^{2}$ ${\href{/padicField/31.8.0.1}{8} }^{2}$ ${\href{/padicField/37.8.0.1}{8} }^{2}$ ${\href{/padicField/41.8.0.1}{8} }^{2}$ ${\href{/padicField/43.4.0.1}{4} }^{4}$ ${\href{/padicField/47.2.0.1}{2} }^{8}$ ${\href{/padicField/53.4.0.1}{4} }^{4}$ ${\href{/padicField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(17\) Copy content Toggle raw display 17.8.7.3$x^{8} + 17$$8$$1$$7$$C_8$$[\ ]_{8}$
17.8.7.3$x^{8} + 17$$8$$1$$7$$C_8$$[\ ]_{8}$
\(67\) Copy content Toggle raw display $\Q_{67}$$x + 65$$1$$1$$0$Trivial$[\ ]$
$\Q_{67}$$x + 65$$1$$1$$0$Trivial$[\ ]$
$\Q_{67}$$x + 65$$1$$1$$0$Trivial$[\ ]$
$\Q_{67}$$x + 65$$1$$1$$0$Trivial$[\ ]$
$\Q_{67}$$x + 65$$1$$1$$0$Trivial$[\ ]$
$\Q_{67}$$x + 65$$1$$1$$0$Trivial$[\ ]$
$\Q_{67}$$x + 65$$1$$1$$0$Trivial$[\ ]$
$\Q_{67}$$x + 65$$1$$1$$0$Trivial$[\ ]$
67.2.1.2$x^{2} + 67$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.1.2$x^{2} + 67$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.1.2$x^{2} + 67$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.1.2$x^{2} + 67$$2$$1$$1$$C_2$$[\ ]_{2}$