Normalized defining polynomial
\( x^{16} - 2 x^{15} + 114 x^{14} + 512 x^{13} + 1901 x^{12} - 8920 x^{11} - 171530 x^{10} + \cdots - 49669687 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[8, 4]$ |
| |
| Discriminant: |
\(336343694112121707284133254922278323609\)
\(\medspace = 61^{6}\cdot 97^{14}\)
|
| |
| Root discriminant: | \(255.81\) |
| |
| Galois root discriminant: | $61^{1/2}97^{7/8}\approx 427.6516824854611$ | ||
| Ramified primes: |
\(61\), \(97\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{12}a^{12}-\frac{1}{6}a^{11}-\frac{1}{6}a^{10}+\frac{1}{4}a^{9}-\frac{1}{6}a^{8}-\frac{1}{4}a^{6}+\frac{1}{3}a^{4}+\frac{1}{12}a^{3}+\frac{1}{3}a^{2}+\frac{1}{12}$, $\frac{1}{732}a^{13}+\frac{5}{366}a^{12}-\frac{1}{6}a^{11}-\frac{83}{244}a^{10}-\frac{121}{366}a^{9}+\frac{17}{61}a^{8}+\frac{103}{244}a^{7}-\frac{24}{61}a^{6}-\frac{56}{183}a^{5}+\frac{37}{732}a^{4}+\frac{19}{183}a^{3}-\frac{8}{61}a^{2}+\frac{301}{732}a-\frac{19}{61}$, $\frac{1}{732}a^{14}+\frac{11}{366}a^{12}-\frac{83}{244}a^{11}+\frac{74}{183}a^{10}-\frac{76}{183}a^{9}-\frac{23}{732}a^{8}+\frac{47}{122}a^{7}-\frac{68}{183}a^{6}+\frac{27}{244}a^{5}-\frac{25}{366}a^{4}+\frac{10}{61}a^{3}+\frac{41}{732}a^{2}-\frac{155}{366}a+\frac{82}{183}$, $\frac{1}{49\cdots 76}a^{15}+\frac{87\cdots 95}{16\cdots 92}a^{14}+\frac{50\cdots 75}{12\cdots 19}a^{13}+\frac{21\cdots 35}{12\cdots 19}a^{12}-\frac{18\cdots 55}{49\cdots 76}a^{11}-\frac{73\cdots 10}{41\cdots 73}a^{10}+\frac{88\cdots 89}{24\cdots 38}a^{9}+\frac{10\cdots 25}{49\cdots 76}a^{8}-\frac{10\cdots 39}{12\cdots 19}a^{7}-\frac{13\cdots 36}{41\cdots 73}a^{6}-\frac{22\cdots 57}{49\cdots 76}a^{5}+\frac{58\cdots 53}{12\cdots 19}a^{4}+\frac{52\cdots 12}{12\cdots 19}a^{3}+\frac{61\cdots 09}{16\cdots 92}a^{2}-\frac{24\cdots 28}{12\cdots 19}a+\frac{14\cdots 89}{11\cdots 32}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}$, which has order $32$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{81\cdots 97}{49\cdots 76}a^{15}-\frac{89\cdots 73}{49\cdots 76}a^{14}+\frac{46\cdots 79}{24\cdots 38}a^{13}+\frac{16\cdots 01}{16\cdots 92}a^{12}+\frac{20\cdots 25}{49\cdots 76}a^{11}-\frac{45\cdots 11}{41\cdots 73}a^{10}-\frac{48\cdots 35}{16\cdots 92}a^{9}+\frac{68\cdots 27}{16\cdots 92}a^{8}+\frac{59\cdots 87}{24\cdots 38}a^{7}+\frac{86\cdots 55}{49\cdots 76}a^{6}-\frac{65\cdots 47}{49\cdots 76}a^{5}-\frac{72\cdots 15}{83\cdots 46}a^{4}+\frac{87\cdots 31}{49\cdots 76}a^{3}+\frac{56\cdots 39}{16\cdots 92}a^{2}-\frac{28\cdots 09}{83\cdots 46}a+\frac{16\cdots 27}{19\cdots 22}$, $\frac{87\cdots 99}{49\cdots 76}a^{15}-\frac{17\cdots 57}{49\cdots 76}a^{14}+\frac{16\cdots 85}{83\cdots 46}a^{13}+\frac{44\cdots 03}{49\cdots 76}a^{12}+\frac{14\cdots 17}{49\cdots 76}a^{11}-\frac{21\cdots 04}{12\cdots 19}a^{10}-\frac{15\cdots 97}{49\cdots 76}a^{9}+\frac{12\cdots 47}{16\cdots 92}a^{8}+\frac{68\cdots 77}{24\cdots 38}a^{7}-\frac{37\cdots 57}{49\cdots 76}a^{6}-\frac{11\cdots 45}{16\cdots 92}a^{5}-\frac{24\cdots 53}{24\cdots 38}a^{4}+\frac{50\cdots 11}{49\cdots 76}a^{3}+\frac{40\cdots 21}{81\cdots 16}a^{2}-\frac{15\cdots 81}{24\cdots 38}a-\frac{66\cdots 21}{96\cdots 11}$, $\frac{16\cdots 63}{84\cdots 18}a^{15}-\frac{53\cdots 37}{25\cdots 54}a^{14}+\frac{28\cdots 78}{12\cdots 27}a^{13}+\frac{50\cdots 49}{42\cdots 09}a^{12}+\frac{12\cdots 55}{25\cdots 54}a^{11}-\frac{16\cdots 95}{12\cdots 27}a^{10}-\frac{44\cdots 88}{12\cdots 27}a^{9}+\frac{12\cdots 63}{25\cdots 54}a^{8}+\frac{12\cdots 44}{42\cdots 09}a^{7}+\frac{26\cdots 27}{12\cdots 27}a^{6}-\frac{36\cdots 49}{25\cdots 54}a^{5}-\frac{43\cdots 27}{42\cdots 09}a^{4}+\frac{23\cdots 73}{12\cdots 27}a^{3}+\frac{10\cdots 17}{25\cdots 54}a^{2}-\frac{51\cdots 25}{12\cdots 27}a+\frac{26\cdots 31}{25\cdots 54}$, $\frac{51\cdots 13}{40\cdots 58}a^{15}-\frac{23\cdots 31}{16\cdots 92}a^{14}+\frac{35\cdots 69}{24\cdots 38}a^{13}+\frac{64\cdots 03}{83\cdots 46}a^{12}+\frac{15\cdots 25}{49\cdots 76}a^{11}-\frac{21\cdots 11}{24\cdots 38}a^{10}-\frac{28\cdots 83}{12\cdots 19}a^{9}+\frac{16\cdots 59}{49\cdots 76}a^{8}+\frac{23\cdots 94}{12\cdots 19}a^{7}+\frac{52\cdots 76}{41\cdots 73}a^{6}-\frac{57\cdots 89}{49\cdots 76}a^{5}-\frac{28\cdots 79}{41\cdots 73}a^{4}+\frac{19\cdots 35}{12\cdots 19}a^{3}+\frac{13\cdots 27}{49\cdots 76}a^{2}-\frac{34\cdots 77}{12\cdots 19}a+\frac{37\cdots 15}{57\cdots 66}$, $\frac{74\cdots 38}{28\cdots 33}a^{15}-\frac{10\cdots 69}{38\cdots 44}a^{14}+\frac{16\cdots 49}{57\cdots 66}a^{13}+\frac{45\cdots 24}{28\cdots 33}a^{12}+\frac{72\cdots 19}{11\cdots 32}a^{11}-\frac{33\cdots 71}{19\cdots 22}a^{10}-\frac{26\cdots 71}{57\cdots 66}a^{9}+\frac{75\cdots 01}{11\cdots 32}a^{8}+\frac{10\cdots 78}{28\cdots 33}a^{7}+\frac{50\cdots 57}{19\cdots 22}a^{6}-\frac{24\cdots 31}{11\cdots 32}a^{5}-\frac{39\cdots 35}{28\cdots 33}a^{4}+\frac{17\cdots 45}{57\cdots 66}a^{3}+\frac{20\cdots 19}{38\cdots 44}a^{2}-\frac{15\cdots 22}{28\cdots 33}a+\frac{77\cdots 15}{57\cdots 66}$, $\frac{39\cdots 81}{16\cdots 36}a^{15}-\frac{11\cdots 35}{50\cdots 08}a^{14}+\frac{66\cdots 81}{25\cdots 54}a^{13}+\frac{12\cdots 15}{84\cdots 18}a^{12}+\frac{29\cdots 49}{50\cdots 08}a^{11}-\frac{37\cdots 67}{25\cdots 54}a^{10}-\frac{52\cdots 36}{12\cdots 27}a^{9}+\frac{27\cdots 13}{50\cdots 08}a^{8}+\frac{28\cdots 45}{84\cdots 18}a^{7}+\frac{69\cdots 13}{25\cdots 54}a^{6}-\frac{66\cdots 65}{50\cdots 08}a^{5}-\frac{10\cdots 33}{84\cdots 18}a^{4}+\frac{42\cdots 43}{25\cdots 54}a^{3}+\frac{23\cdots 19}{50\cdots 08}a^{2}-\frac{11\cdots 73}{25\cdots 54}a+\frac{97\cdots 59}{83\cdots 28}$, $\frac{44\cdots 63}{16\cdots 92}a^{15}-\frac{36\cdots 92}{12\cdots 19}a^{14}+\frac{37\cdots 36}{12\cdots 19}a^{13}+\frac{20\cdots 75}{12\cdots 19}a^{12}+\frac{54\cdots 31}{83\cdots 46}a^{11}-\frac{74\cdots 35}{41\cdots 73}a^{10}-\frac{58\cdots 15}{12\cdots 19}a^{9}+\frac{83\cdots 61}{12\cdots 19}a^{8}+\frac{32\cdots 29}{83\cdots 46}a^{7}+\frac{69\cdots 69}{24\cdots 38}a^{6}-\frac{53\cdots 97}{24\cdots 38}a^{5}-\frac{35\cdots 17}{24\cdots 38}a^{4}+\frac{23\cdots 75}{83\cdots 46}a^{3}+\frac{45\cdots 01}{83\cdots 46}a^{2}-\frac{14\cdots 25}{24\cdots 38}a+\frac{16\cdots 91}{11\cdots 32}$, $\frac{69\cdots 07}{83\cdots 46}a^{15}-\frac{10\cdots 23}{24\cdots 38}a^{14}+\frac{89\cdots 77}{83\cdots 46}a^{13}+\frac{46\cdots 40}{41\cdots 73}a^{12}+\frac{30\cdots 17}{24\cdots 38}a^{11}-\frac{27\cdots 95}{24\cdots 38}a^{10}-\frac{13\cdots 02}{12\cdots 19}a^{9}+\frac{56\cdots 97}{83\cdots 46}a^{8}-\frac{78\cdots 75}{83\cdots 46}a^{7}+\frac{30\cdots 44}{12\cdots 19}a^{6}-\frac{72\cdots 65}{83\cdots 46}a^{5}-\frac{15\cdots 07}{83\cdots 46}a^{4}+\frac{13\cdots 88}{12\cdots 19}a^{3}-\frac{35\cdots 79}{24\cdots 38}a^{2}+\frac{19\cdots 35}{24\cdots 38}a-\frac{28\cdots 51}{19\cdots 22}$, $\frac{19\cdots 95}{16\cdots 92}a^{15}-\frac{94\cdots 25}{12\cdots 19}a^{14}+\frac{76\cdots 95}{49\cdots 76}a^{13}-\frac{12\cdots 95}{41\cdots 73}a^{12}+\frac{52\cdots 49}{12\cdots 19}a^{11}-\frac{11\cdots 27}{49\cdots 76}a^{10}-\frac{20\cdots 99}{12\cdots 19}a^{9}+\frac{15\cdots 59}{12\cdots 19}a^{8}-\frac{24\cdots 61}{16\cdots 92}a^{7}+\frac{16\cdots 61}{12\cdots 19}a^{6}-\frac{29\cdots 41}{24\cdots 38}a^{5}-\frac{83\cdots 61}{16\cdots 92}a^{4}+\frac{31\cdots 25}{12\cdots 19}a^{3}-\frac{87\cdots 99}{24\cdots 38}a^{2}+\frac{96\cdots 97}{49\cdots 76}a-\frac{42\cdots 47}{11\cdots 32}$, $\frac{22\cdots 47}{83\cdots 46}a^{15}-\frac{11\cdots 31}{83\cdots 46}a^{14}+\frac{14\cdots 44}{41\cdots 73}a^{13}+\frac{28\cdots 59}{83\cdots 46}a^{12}+\frac{33\cdots 79}{83\cdots 46}a^{11}-\frac{15\cdots 52}{41\cdots 73}a^{10}-\frac{29\cdots 67}{83\cdots 46}a^{9}+\frac{18\cdots 93}{83\cdots 46}a^{8}-\frac{13\cdots 13}{41\cdots 73}a^{7}+\frac{67\cdots 87}{83\cdots 46}a^{6}-\frac{23\cdots 51}{83\cdots 46}a^{5}-\frac{24\cdots 22}{41\cdots 73}a^{4}+\frac{28\cdots 51}{83\cdots 46}a^{3}-\frac{40\cdots 43}{83\cdots 46}a^{2}+\frac{11\cdots 08}{41\cdots 73}a-\frac{53\cdots 98}{96\cdots 11}$, $\frac{33\cdots 39}{49\cdots 76}a^{15}-\frac{43\cdots 07}{41\cdots 73}a^{14}+\frac{37\cdots 81}{49\cdots 76}a^{13}+\frac{62\cdots 75}{16\cdots 92}a^{12}+\frac{35\cdots 61}{24\cdots 38}a^{11}-\frac{26\cdots 55}{49\cdots 76}a^{10}-\frac{58\cdots 81}{49\cdots 76}a^{9}+\frac{55\cdots 07}{24\cdots 38}a^{8}+\frac{45\cdots 79}{49\cdots 76}a^{7}+\frac{35\cdots 07}{16\cdots 92}a^{6}-\frac{26\cdots 63}{24\cdots 38}a^{5}-\frac{58\cdots 15}{16\cdots 92}a^{4}+\frac{11\cdots 89}{49\cdots 76}a^{3}+\frac{35\cdots 49}{24\cdots 38}a^{2}-\frac{10\cdots 53}{49\cdots 76}a+\frac{44\cdots 27}{57\cdots 66}$
|
| |
| Regulator: | \( 9467964682180 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 9467964682180 \cdot 2}{2\cdot\sqrt{336343694112121707284133254922278323609}}\cr\approx \mathstrut & 0.205979700855647 \end{aligned}\] (assuming GRH)
Galois group
$C_2^6:C_8$ (as 16T817):
| A solvable group of order 512 |
| The 32 conjugacy class representatives for $C_2^6:C_8$ |
| Character table for $C_2^6:C_8$ |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | 16.8.24292037884309209334711647701449.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.4.0.1}{4} }^{4}$ | ${\href{/padicField/3.4.0.1}{4} }^{4}$ | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.8.0.1}{8} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(61\)
| $\Q_{61}$ | $x + 59$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{61}$ | $x + 59$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{61}$ | $x + 59$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{61}$ | $x + 59$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 61.1.2.1a1.1 | $x^{2} + 61$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 61.1.2.1a1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 61.1.2.1a1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 61.1.2.1a1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 61.1.2.1a1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 61.1.2.1a1.1 | $x^{2} + 61$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
|
\(97\)
| 97.1.8.7a1.1 | $x^{8} + 97$ | $8$ | $1$ | $7$ | $C_8$ | $$[\ ]_{8}$$ |
| 97.1.8.7a1.1 | $x^{8} + 97$ | $8$ | $1$ | $7$ | $C_8$ | $$[\ ]_{8}$$ |