Normalized defining polynomial
\( x^{16} - 2 x^{15} + 114 x^{14} + 512 x^{13} + 1901 x^{12} - 8920 x^{11} - 171530 x^{10} + 412377 x^{9} + 1231086 x^{8} - 275150 x^{7} - 1736631 x^{6} - 52474780 x^{5} + 58963430 x^{4} + 195632765 x^{3} - 399339032 x^{2} + 247945353 x - 49669687 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(336343694112121707284133254922278323609=61^{6}\cdot 97^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $255.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{12} a^{12} - \frac{1}{6} a^{11} - \frac{1}{6} a^{10} + \frac{1}{4} a^{9} - \frac{1}{6} a^{8} - \frac{1}{4} a^{6} + \frac{1}{3} a^{4} + \frac{1}{12} a^{3} + \frac{1}{3} a^{2} + \frac{1}{12}$, $\frac{1}{732} a^{13} + \frac{5}{366} a^{12} - \frac{1}{6} a^{11} - \frac{83}{244} a^{10} - \frac{121}{366} a^{9} + \frac{17}{61} a^{8} + \frac{103}{244} a^{7} - \frac{24}{61} a^{6} - \frac{56}{183} a^{5} + \frac{37}{732} a^{4} + \frac{19}{183} a^{3} - \frac{8}{61} a^{2} + \frac{301}{732} a - \frac{19}{61}$, $\frac{1}{732} a^{14} + \frac{11}{366} a^{12} - \frac{83}{244} a^{11} + \frac{74}{183} a^{10} - \frac{76}{183} a^{9} - \frac{23}{732} a^{8} + \frac{47}{122} a^{7} - \frac{68}{183} a^{6} + \frac{27}{244} a^{5} - \frac{25}{366} a^{4} + \frac{10}{61} a^{3} + \frac{41}{732} a^{2} - \frac{155}{366} a + \frac{82}{183}$, $\frac{1}{498574475690546600855273799950463789879388754022246437535276} a^{15} + \frac{87458594817287912690638910183752911152350910381701226795}{166191491896848866951757933316821263293129584674082145845092} a^{14} + \frac{50593823673965907296578396919762167742578615947861890075}{124643618922636650213818449987615947469847188505561609383819} a^{13} + \frac{2137656729372000519890034176608168860649917306962640547535}{124643618922636650213818449987615947469847188505561609383819} a^{12} - \frac{187459716951935239499680042720765320602021776759745554546955}{498574475690546600855273799950463789879388754022246437535276} a^{11} - \frac{7350015266246890042670516441812020126509047263193471450710}{41547872974212216737939483329205315823282396168520536461273} a^{10} + \frac{88748590865226405448706766993316331204149523227707952001089}{249287237845273300427636899975231894939694377011123218767638} a^{9} + \frac{101450872377074843570764949083007162417216536976361385332625}{498574475690546600855273799950463789879388754022246437535276} a^{8} - \frac{102646844239695565924070892769007682618206255730759293639}{124643618922636650213818449987615947469847188505561609383819} a^{7} - \frac{13216409113111458314475656238010645073741742732178388200836}{41547872974212216737939483329205315823282396168520536461273} a^{6} - \frac{225921665798595003409400438673133108735034100778859600694457}{498574475690546600855273799950463789879388754022246437535276} a^{5} + \frac{58610112584964940411416983000904596130140852742201023590553}{124643618922636650213818449987615947469847188505561609383819} a^{4} + \frac{52517360699395179681821182067026897191075893165243545312312}{124643618922636650213818449987615947469847188505561609383819} a^{3} + \frac{61212338419738804162619600062995951197445497011004559838309}{166191491896848866951757933316821263293129584674082145845092} a^{2} - \frac{24864542828534511740434224669423056877640443752731337775328}{124643618922636650213818449987615947469847188505561609383819} a + \frac{1411312758274789827258592277778321893719502824293573517789}{11594755248617362810587762789545669532078808233075498547332}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9467964682180 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n817 |
| Character table for t16n817 is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| $97$ | 97.8.7.1 | $x^{8} - 97$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 97.8.7.1 | $x^{8} - 97$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |