Normalized defining polynomial
\( x^{16} - 4 x^{15} - 60 x^{14} + 276 x^{13} - 580 x^{12} + 3640 x^{11} + 29412 x^{10} - 487616 x^{9} + 2400752 x^{8} + 2909352 x^{7} - 65404272 x^{6} + 202341208 x^{5} + 330768 x^{4} - 1951919440 x^{3} + 6195469544 x^{2} - 7573198816 x + 3611349436 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(33531062442740678656000000000000=2^{36}\cdot 5^{12}\cdot 29^{4}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $93.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{60} a^{12} + \frac{1}{20} a^{11} + \frac{1}{30} a^{10} - \frac{1}{15} a^{9} + \frac{7}{60} a^{8} - \frac{1}{5} a^{7} + \frac{1}{10} a^{6} - \frac{4}{15} a^{5} + \frac{3}{10} a^{4} + \frac{11}{30} a^{3} + \frac{4}{15} a^{2} - \frac{7}{15} a - \frac{7}{30}$, $\frac{1}{60} a^{13} - \frac{7}{60} a^{11} + \frac{1}{12} a^{10} + \frac{1}{15} a^{9} - \frac{1}{20} a^{8} + \frac{1}{5} a^{7} + \frac{13}{30} a^{6} + \frac{1}{10} a^{5} + \frac{7}{15} a^{4} + \frac{1}{6} a^{3} + \frac{7}{30} a^{2} - \frac{1}{3} a - \frac{3}{10}$, $\frac{1}{60} a^{14} - \frac{1}{15} a^{11} + \frac{1}{20} a^{10} - \frac{1}{60} a^{9} + \frac{1}{60} a^{8} + \frac{1}{30} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{4}{15} a^{4} - \frac{1}{5} a^{3} + \frac{1}{30} a^{2} + \frac{13}{30} a + \frac{11}{30}$, $\frac{1}{461346427268492111217515410285394035458900544378966976300780460} a^{15} - \frac{439882811682396326432335553525767230800483592682022030041041}{153782142422830703739171803428464678486300181459655658766926820} a^{14} - \frac{1151480521131127285179146326135488257783940435022635585198859}{230673213634246055608757705142697017729450272189483488150390230} a^{13} + \frac{2982720251209695307788626212854503872046359276241796719940317}{461346427268492111217515410285394035458900544378966976300780460} a^{12} - \frac{13063887930372535541126855305745865317612330904100850057144303}{230673213634246055608757705142697017729450272189483488150390230} a^{11} - \frac{14050954148746743640785411910268548174869575987501958069888803}{461346427268492111217515410285394035458900544378966976300780460} a^{10} + \frac{18880896878588147080571699022031536410072956455099740690511233}{461346427268492111217515410285394035458900544378966976300780460} a^{9} - \frac{3339297498162389544450921000979210480091062689874828491680459}{92269285453698422243503082057078807091780108875793395260156092} a^{8} + \frac{957848126631218951980754670161007639912327797694069750781147}{38445535605707675934792950857116169621575045364913914691731705} a^{7} + \frac{5053386903834569062440721709095357153902004378615880705802004}{23067321363424605560875770514269701772945027218948348815039023} a^{6} - \frac{50147056176902753029908889705567142233935014109394561237474739}{115336606817123027804378852571348508864725136094741744075195115} a^{5} - \frac{8428881996573048705204538662209756592328032812096293304085703}{230673213634246055608757705142697017729450272189483488150390230} a^{4} - \frac{2013342415955244955382104824551346439152887738853490546979863}{7689107121141535186958590171423233924315009072982782938346341} a^{3} + \frac{38119792296070126712248334750529687810238512897889998397312667}{230673213634246055608757705142697017729450272189483488150390230} a^{2} + \frac{52335685563693545309908818678667415527147575815282202137966083}{230673213634246055608757705142697017729450272189483488150390230} a - \frac{11065509851631702843571224612494766316505049737697554109731111}{76891071211415351869585901714232339243150090729827829383463410}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1678641423.83 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3$ (as 16T203):
| A solvable group of order 128 |
| The 41 conjugacy class representatives for $C_2^4.C_2^3$ |
| Character table for $C_2^4.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), \(\Q(\zeta_{20})^+\), 4.4.8000.1, \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\zeta_{40})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 41 | Data not computed | ||||||