Normalized defining polynomial
\( x^{16} - 8 x^{14} - 486 x^{12} + 4144 x^{10} + 23023 x^{8} - 16776 x^{6} - 153194 x^{4} - 124112 x^{2} + 1557 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3349520910408744233869290504192=2^{24}\cdot 3^{16}\cdot 173^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $80.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 173$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{12} a^{9} - \frac{1}{6} a^{7} - \frac{1}{4} a^{5} - \frac{1}{3} a^{3} - \frac{1}{12} a$, $\frac{1}{24} a^{10} - \frac{1}{24} a^{9} + \frac{1}{24} a^{8} - \frac{1}{6} a^{7} + \frac{1}{8} a^{6} - \frac{1}{8} a^{5} + \frac{5}{24} a^{4} + \frac{5}{12} a^{3} - \frac{7}{24} a^{2} - \frac{11}{24} a + \frac{1}{8}$, $\frac{1}{24} a^{11} - \frac{1}{8} a^{8} - \frac{1}{24} a^{7} + \frac{1}{12} a^{5} + \frac{1}{8} a^{4} + \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{3} a - \frac{3}{8}$, $\frac{1}{888} a^{12} + \frac{5}{296} a^{10} + \frac{13}{444} a^{8} + \frac{143}{888} a^{6} + \frac{3}{148} a^{4} + \frac{415}{888} a^{2} + \frac{35}{296}$, $\frac{1}{888} a^{13} + \frac{5}{296} a^{11} + \frac{13}{444} a^{9} + \frac{143}{888} a^{7} + \frac{3}{148} a^{5} + \frac{415}{888} a^{3} + \frac{35}{296} a$, $\frac{1}{283270598570832} a^{14} - \frac{1}{1776} a^{13} + \frac{19425959653}{47211766428472} a^{12} - \frac{5}{592} a^{11} + \frac{1155667208137}{94423532856944} a^{10} - \frac{13}{888} a^{9} - \frac{8237266701985}{94423532856944} a^{8} + \frac{301}{1776} a^{7} + \frac{19447595627057}{94423532856944} a^{6} + \frac{71}{296} a^{5} + \frac{1304296033491}{94423532856944} a^{4} + \frac{29}{1776} a^{3} + \frac{12464786271499}{141635299285416} a^{2} + \frac{261}{592} a + \frac{543595760325}{2551987374512}$, $\frac{1}{283270598570832} a^{15} - \frac{42943452989}{283270598570832} a^{13} - \frac{1}{1776} a^{12} + \frac{179085576801}{47211766428472} a^{11} - \frac{5}{592} a^{10} - \frac{5252896375301}{283270598570832} a^{9} - \frac{13}{888} a^{8} + \frac{29570141467853}{141635299285416} a^{7} + \frac{301}{1776} a^{6} + \frac{347300768049}{94423532856944} a^{5} + \frac{71}{296} a^{4} - \frac{64868483197643}{283270598570832} a^{3} + \frac{29}{1776} a^{2} - \frac{30412367562203}{70817649642708} a + \frac{261}{592}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4959484238.44 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6144 |
| The 41 conjugacy class representatives for t16n1691 |
| Character table for t16n1691 is not computed |
Intermediate fields
| 4.4.14013.1, 8.8.8696576316672.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $16$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | $16$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | $16$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.6.8.5 | $x^{6} + 9 x^{2} + 9$ | $3$ | $2$ | $8$ | $S_3$ | $[2]^{2}$ | |
| 3.6.8.5 | $x^{6} + 9 x^{2} + 9$ | $3$ | $2$ | $8$ | $S_3$ | $[2]^{2}$ | |
| 173 | Data not computed | ||||||