Normalized defining polynomial
\( x^{16} - 56 x^{14} - 4242 x^{12} + 173264 x^{10} + 5439392 x^{8} - 88510464 x^{6} - 155595776 x^{4} + 1730871296 x^{2} + 314703872 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3330410051873424453724414210438886064128=2^{39}\cdot 7^{12}\cdot 17^{8}\cdot 89^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $295.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{14} a^{4}$, $\frac{1}{28} a^{5} - \frac{1}{2} a$, $\frac{1}{56} a^{6} + \frac{1}{4} a^{2}$, $\frac{1}{112} a^{7} + \frac{1}{8} a^{3}$, $\frac{1}{1568} a^{8} + \frac{1}{112} a^{4}$, $\frac{1}{3136} a^{9} + \frac{1}{224} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{12544} a^{10} - \frac{1}{3136} a^{8} - \frac{1}{128} a^{6} - \frac{5}{224} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{25088} a^{11} - \frac{1}{6272} a^{9} - \frac{1}{256} a^{7} - \frac{5}{448} a^{5} + \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{2107392} a^{12} - \frac{1}{25088} a^{10} - \frac{1}{6272} a^{9} - \frac{1}{21504} a^{8} - \frac{31}{5376} a^{6} + \frac{1}{64} a^{5} + \frac{11}{672} a^{4} + \frac{1}{4} a^{3} - \frac{1}{24} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{4214784} a^{13} - \frac{1}{50176} a^{11} - \frac{1}{43008} a^{9} - \frac{1}{3136} a^{8} - \frac{31}{10752} a^{7} + \frac{11}{1344} a^{5} + \frac{1}{32} a^{4} + \frac{23}{48} a^{3} - \frac{1}{2} a^{2} - \frac{1}{6} a$, $\frac{1}{2818947363720585216} a^{14} + \frac{6004642165}{704736840930146304} a^{12} + \frac{4493976830921}{201353383122898944} a^{10} - \frac{1}{6272} a^{9} - \frac{15040399313087}{50338345780724736} a^{8} - \frac{154836763887}{74908252649888} a^{6} + \frac{1}{64} a^{5} + \frac{376511435215}{11827618839456} a^{4} + \frac{1}{4} a^{3} - \frac{24824316849}{1337647368748} a^{2} - \frac{1}{2} a - \frac{183927147178}{1003235526561}$, $\frac{1}{11275789454882340864} a^{15} - \frac{54734533337}{469824560620097536} a^{13} + \frac{12519861043409}{805413532491595776} a^{11} - \frac{6349758208889}{100676691561449472} a^{9} + \frac{6650684774509}{7191192254389248} a^{7} + \frac{45726144803}{11827618839456} a^{5} - \frac{15866302483883}{32103536849952} a^{3} - \frac{71062569296}{334411842187} a$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 221387435824000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 94 conjugacy class representatives for t16n1581 are not computed |
| Character table for t16n1581 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.113288.1, 4.4.205768.1, 4.4.80661056.1, 8.8.6506205955035136.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.4.11.16 | $x^{4} + 14$ | $4$ | $1$ | $11$ | $D_{4}$ | $[2, 3, 4]$ | |
| 2.4.11.15 | $x^{4} + 30$ | $4$ | $1$ | $11$ | $D_{4}$ | $[2, 3, 4]$ | |
| 2.4.11.4 | $x^{4} + 12 x^{2} + 18$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 7 | Data not computed | ||||||
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $89$ | 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 89.8.4.1 | $x^{8} + 427734 x^{4} - 704969 x^{2} + 45739093689$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |