Properties

Label 16.8.32995303182...0000.3
Degree $16$
Signature $[8, 4]$
Discriminant $2^{12}\cdot 5^{8}\cdot 11^{4}\cdot 269^{5}$
Root discriminant $39.35$
Ramified primes $2, 5, 11, 269$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1870

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![41, 228, -247, -905, 808, 1011, -3252, 1107, 3615, -585, -1303, 44, 219, 10, -22, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 - 22*x^14 + 10*x^13 + 219*x^12 + 44*x^11 - 1303*x^10 - 585*x^9 + 3615*x^8 + 1107*x^7 - 3252*x^6 + 1011*x^5 + 808*x^4 - 905*x^3 - 247*x^2 + 228*x + 41)
 
gp: K = bnfinit(x^16 - x^15 - 22*x^14 + 10*x^13 + 219*x^12 + 44*x^11 - 1303*x^10 - 585*x^9 + 3615*x^8 + 1107*x^7 - 3252*x^6 + 1011*x^5 + 808*x^4 - 905*x^3 - 247*x^2 + 228*x + 41, 1)
 

Normalized defining polynomial

\( x^{16} - x^{15} - 22 x^{14} + 10 x^{13} + 219 x^{12} + 44 x^{11} - 1303 x^{10} - 585 x^{9} + 3615 x^{8} + 1107 x^{7} - 3252 x^{6} + 1011 x^{5} + 808 x^{4} - 905 x^{3} - 247 x^{2} + 228 x + 41 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(32995303182626734400000000=2^{12}\cdot 5^{8}\cdot 11^{4}\cdot 269^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $39.35$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 11, 269$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{15} a^{13} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{7}{15} a^{9} - \frac{4}{15} a^{8} - \frac{7}{15} a^{7} - \frac{2}{5} a^{6} + \frac{1}{15} a^{5} - \frac{4}{15} a^{4} - \frac{7}{15} a^{3} + \frac{4}{15} a^{2} - \frac{1}{15}$, $\frac{1}{75} a^{14} - \frac{1}{75} a^{12} - \frac{16}{75} a^{11} + \frac{32}{75} a^{10} - \frac{2}{15} a^{9} - \frac{16}{75} a^{8} - \frac{12}{25} a^{7} - \frac{32}{75} a^{6} - \frac{31}{75} a^{5} + \frac{4}{15} a^{4} - \frac{4}{15} a^{3} + \frac{11}{25} a^{2} + \frac{8}{75} a - \frac{7}{25}$, $\frac{1}{16913847762175020031275} a^{15} - \frac{2092766808250372513}{676553910487000801251} a^{14} - \frac{549493484215206147001}{16913847762175020031275} a^{13} + \frac{136800654083980759103}{5637949254058340010425} a^{12} - \frac{1998867619691371942156}{5637949254058340010425} a^{11} - \frac{476330537236574630824}{1127589850811668002085} a^{10} - \frac{916225263552020810122}{5637949254058340010425} a^{9} - \frac{6697061079647550807686}{16913847762175020031275} a^{8} + \frac{8169049345729154739493}{16913847762175020031275} a^{7} + \frac{2723360849107884019594}{16913847762175020031275} a^{6} + \frac{371017016498715357098}{1127589850811668002085} a^{5} + \frac{1332325547398151421676}{3382769552435004006255} a^{4} + \frac{1366562480955711341708}{16913847762175020031275} a^{3} - \frac{2797206672238996572292}{16913847762175020031275} a^{2} + \frac{6739280659386557690179}{16913847762175020031275} a - \frac{26934632457657788}{5500438296642282937}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 6117795.78283 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1870:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 73728
The 83 conjugacy class representatives for t16n1870 are not computed
Character table for t16n1870 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 8.8.87556810000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ R ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.12.8.2$x^{12} - 8 x^{3} + 16$$3$$4$$8$$C_3\times (C_3 : C_4)$$[\ ]_{3}^{12}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$11$11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.6.0.1$x^{6} + x^{2} - 2 x + 8$$1$$6$$0$$C_6$$[\ ]^{6}$
269Data not computed