Normalized defining polynomial
\( x^{16} - 20 x^{14} - 16 x^{13} + 124 x^{12} + 180 x^{11} - 100 x^{10} - 584 x^{9} - 1360 x^{8} + \cdots + 704 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[8, 4]$ |
| |
| Discriminant: |
\(32995303182626734400000000\)
\(\medspace = 2^{12}\cdot 5^{8}\cdot 11^{4}\cdot 269^{5}\)
|
| |
| Root discriminant: | \(39.35\) |
| |
| Galois root discriminant: | $2^{4/3}5^{1/2}11^{1/2}269^{3/4}\approx 1241.2774973494347$ | ||
| Ramified primes: |
\(2\), \(5\), \(11\), \(269\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{269}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}$, $\frac{1}{2}a^{4}$, $\frac{1}{2}a^{5}$, $\frac{1}{4}a^{6}$, $\frac{1}{4}a^{7}$, $\frac{1}{8}a^{8}-\frac{1}{4}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{8}a^{9}$, $\frac{1}{8}a^{10}$, $\frac{1}{16}a^{11}-\frac{1}{2}a^{2}$, $\frac{1}{16}a^{12}$, $\frac{1}{16}a^{13}$, $\frac{1}{32}a^{14}-\frac{1}{4}a^{5}$, $\frac{1}{33\cdots 92}a^{15}-\frac{43617176685077}{33\cdots 92}a^{14}-\frac{15895334589273}{849815329867048}a^{13}-\frac{3233686850574}{106226916233381}a^{12}+\frac{25601545031743}{849815329867048}a^{11}+\frac{44758124037515}{849815329867048}a^{10}+\frac{28393783061587}{849815329867048}a^{9}-\frac{33219545570447}{849815329867048}a^{8}+\frac{20825219618511}{424907664933524}a^{7}+\frac{13533296816121}{424907664933524}a^{6}-\frac{45829536751601}{212453832466762}a^{5}+\frac{12451028149914}{106226916233381}a^{4}+\frac{5269628362539}{106226916233381}a^{3}-\frac{33870597786739}{212453832466762}a^{2}-\frac{30784826639185}{106226916233381}a+\frac{21213183006960}{106226916233381}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{2919986905}{839531074208}a^{15}+\frac{4652148291}{839531074208}a^{14}-\frac{25959187267}{419765537104}a^{13}-\frac{65402246937}{419765537104}a^{12}+\frac{21335704201}{104941384276}a^{11}+\frac{209348252823}{209882768552}a^{10}+\frac{60984963963}{52470692138}a^{9}-\frac{104062067705}{209882768552}a^{8}-\frac{304171279355}{52470692138}a^{7}-\frac{333395793881}{52470692138}a^{6}+\frac{403905631369}{52470692138}a^{5}+\frac{339625405887}{52470692138}a^{4}-\frac{246667922213}{52470692138}a^{3}+\frac{286228159869}{52470692138}a^{2}+\frac{105221852647}{26235346069}a-\frac{21856637811}{26235346069}$, $\frac{28547028993349}{33\cdots 92}a^{15}+\frac{24356577041219}{16\cdots 96}a^{14}-\frac{245755413883627}{16\cdots 96}a^{13}-\frac{40984734660004}{106226916233381}a^{12}+\frac{84906491830599}{212453832466762}a^{11}+\frac{243562381816029}{106226916233381}a^{10}+\frac{26\cdots 39}{849815329867048}a^{9}-\frac{37889962739983}{424907664933524}a^{8}-\frac{53\cdots 21}{424907664933524}a^{7}-\frac{33\cdots 41}{212453832466762}a^{6}+\frac{29\cdots 49}{212453832466762}a^{5}+\frac{12\cdots 22}{106226916233381}a^{4}-\frac{832962057441438}{106226916233381}a^{3}+\frac{15\cdots 44}{106226916233381}a^{2}+\frac{656023243657136}{106226916233381}a-\frac{76854693326399}{106226916233381}$, $\frac{26742919324707}{16\cdots 96}a^{15}+\frac{73875225114531}{33\cdots 92}a^{14}-\frac{119567476695131}{424907664933524}a^{13}-\frac{10\cdots 71}{16\cdots 96}a^{12}+\frac{860618238753947}{849815329867048}a^{11}+\frac{17\cdots 47}{424907664933524}a^{10}+\frac{460849757855272}{106226916233381}a^{9}-\frac{20\cdots 01}{849815329867048}a^{8}-\frac{10\cdots 45}{424907664933524}a^{7}-\frac{92\cdots 23}{424907664933524}a^{6}+\frac{39\cdots 60}{106226916233381}a^{5}+\frac{16\cdots 45}{106226916233381}a^{4}-\frac{50\cdots 79}{212453832466762}a^{3}+\frac{67\cdots 59}{212453832466762}a^{2}+\frac{388804057816341}{106226916233381}a-\frac{794865613411582}{106226916233381}$, $\frac{68342326434345}{33\cdots 92}a^{15}+\frac{94467694921387}{33\cdots 92}a^{14}-\frac{305811401788537}{849815329867048}a^{13}-\frac{13\cdots 17}{16\cdots 96}a^{12}+\frac{11\cdots 97}{849815329867048}a^{11}+\frac{44\cdots 31}{849815329867048}a^{10}+\frac{47\cdots 99}{849815329867048}a^{9}-\frac{27\cdots 91}{849815329867048}a^{8}-\frac{13\cdots 47}{424907664933524}a^{7}-\frac{59\cdots 03}{212453832466762}a^{6}+\frac{10\cdots 05}{212453832466762}a^{5}+\frac{21\cdots 85}{106226916233381}a^{4}-\frac{66\cdots 83}{212453832466762}a^{3}+\frac{84\cdots 17}{212453832466762}a^{2}+\frac{555570456939717}{106226916233381}a-\frac{967687208197077}{106226916233381}$, $\frac{153145945686467}{33\cdots 92}a^{15}+\frac{221400462586685}{33\cdots 92}a^{14}-\frac{342315561279123}{424907664933524}a^{13}-\frac{15\cdots 65}{849815329867048}a^{12}+\frac{24\cdots 21}{849815329867048}a^{11}+\frac{10\cdots 79}{849815329867048}a^{10}+\frac{11\cdots 91}{849815329867048}a^{9}-\frac{29\cdots 21}{424907664933524}a^{8}-\frac{29\cdots 03}{424907664933524}a^{7}-\frac{14\cdots 67}{212453832466762}a^{6}+\frac{45\cdots 59}{424907664933524}a^{5}+\frac{59\cdots 66}{106226916233381}a^{4}-\frac{14\cdots 81}{212453832466762}a^{3}+\frac{92\cdots 83}{106226916233381}a^{2}+\frac{21\cdots 92}{106226916233381}a-\frac{25\cdots 29}{106226916233381}$, $\frac{6952440427569}{33\cdots 92}a^{15}+\frac{337979520279}{849815329867048}a^{14}-\frac{17761987902373}{424907664933524}a^{13}-\frac{74912593903777}{16\cdots 96}a^{12}+\frac{438674048410095}{16\cdots 96}a^{11}+\frac{411937551532943}{849815329867048}a^{10}-\frac{64164075699695}{849815329867048}a^{9}-\frac{12\cdots 69}{849815329867048}a^{8}-\frac{791569592534479}{212453832466762}a^{7}+\frac{1624021450865}{424907664933524}a^{6}+\frac{42\cdots 59}{424907664933524}a^{5}+\frac{14030533281123}{106226916233381}a^{4}-\frac{633186439094834}{106226916233381}a^{3}+\frac{706763872668044}{106226916233381}a^{2}-\frac{220828556515316}{106226916233381}a-\frac{298859519332167}{106226916233381}$, $\frac{13890314800361}{33\cdots 92}a^{15}+\frac{5284456919879}{424907664933524}a^{14}-\frac{51985177126333}{849815329867048}a^{13}-\frac{481749595472749}{16\cdots 96}a^{12}-\frac{98278592736777}{16\cdots 96}a^{11}+\frac{298061194827917}{212453832466762}a^{10}+\frac{26\cdots 81}{849815329867048}a^{9}+\frac{16\cdots 45}{849815329867048}a^{8}-\frac{27\cdots 51}{424907664933524}a^{7}-\frac{70\cdots 43}{424907664933524}a^{6}-\frac{16\cdots 71}{424907664933524}a^{5}+\frac{17\cdots 53}{106226916233381}a^{4}+\frac{665066814038023}{106226916233381}a^{3}+\frac{148247716264486}{106226916233381}a^{2}+\frac{11\cdots 76}{106226916233381}a+\frac{588284003711489}{106226916233381}$, $\frac{2549632430965}{849815329867048}a^{15}+\frac{8266705640483}{16\cdots 96}a^{14}-\frac{44123346968605}{849815329867048}a^{13}-\frac{224322988259061}{16\cdots 96}a^{12}+\frac{64280178481977}{424907664933524}a^{11}+\frac{82703312640989}{106226916233381}a^{10}+\frac{880487941446425}{849815329867048}a^{9}+\frac{4488991817983}{212453832466762}a^{8}-\frac{18\cdots 89}{424907664933524}a^{7}-\frac{22\cdots 21}{424907664933524}a^{6}+\frac{10\cdots 43}{212453832466762}a^{5}+\frac{251999177711099}{106226916233381}a^{4}-\frac{169629640587041}{106226916233381}a^{3}+\frac{838721401078870}{106226916233381}a^{2}-\frac{42815462809240}{106226916233381}a-\frac{143748646662719}{106226916233381}$, $\frac{638877297593}{33\cdots 92}a^{15}-\frac{121834102677}{16\cdots 96}a^{14}-\frac{3456264114113}{849815329867048}a^{13}-\frac{5437269676977}{16\cdots 96}a^{12}+\frac{3007769957222}{106226916233381}a^{11}+\frac{47216162731097}{849815329867048}a^{10}-\frac{565064435173}{424907664933524}a^{9}-\frac{92134114525911}{424907664933524}a^{8}-\frac{248915292509703}{424907664933524}a^{7}-\frac{43333455767993}{424907664933524}a^{6}+\frac{138775882213804}{106226916233381}a^{5}+\frac{42909588798798}{106226916233381}a^{4}-\frac{41442245258273}{106226916233381}a^{3}+\frac{120088063764022}{106226916233381}a^{2}-\frac{13262893854394}{106226916233381}a-\frac{60157745052701}{106226916233381}$, $\frac{111062848803655}{16\cdots 96}a^{15}+\frac{82279726762911}{849815329867048}a^{14}-\frac{19\cdots 61}{16\cdots 96}a^{13}-\frac{23\cdots 55}{849815329867048}a^{12}+\frac{16\cdots 45}{424907664933524}a^{11}+\frac{73\cdots 31}{424907664933524}a^{10}+\frac{16\cdots 95}{849815329867048}a^{9}-\frac{32\cdots 13}{424907664933524}a^{8}-\frac{10\cdots 29}{106226916233381}a^{7}-\frac{42\cdots 59}{424907664933524}a^{6}+\frac{15\cdots 62}{106226916233381}a^{5}+\frac{80\cdots 77}{106226916233381}a^{4}-\frac{19\cdots 43}{212453832466762}a^{3}+\frac{12\cdots 50}{106226916233381}a^{2}+\frac{32\cdots 00}{106226916233381}a-\frac{31\cdots 67}{106226916233381}$, $\frac{30100690119735}{424907664933524}a^{15}+\frac{446829764107}{424907664933524}a^{14}-\frac{23\cdots 91}{16\cdots 96}a^{13}-\frac{19\cdots 81}{16\cdots 96}a^{12}+\frac{35\cdots 31}{424907664933524}a^{11}+\frac{10\cdots 93}{849815329867048}a^{10}-\frac{17\cdots 41}{424907664933524}a^{9}-\frac{31\cdots 67}{849815329867048}a^{8}-\frac{40\cdots 57}{424907664933524}a^{7}+\frac{44\cdots 20}{106226916233381}a^{6}+\frac{12\cdots 89}{424907664933524}a^{5}-\frac{15\cdots 59}{106226916233381}a^{4}-\frac{15\cdots 27}{106226916233381}a^{3}+\frac{51\cdots 77}{212453832466762}a^{2}-\frac{20\cdots 23}{106226916233381}a-\frac{16\cdots 56}{106226916233381}$
|
| |
| Regulator: | \( 18200443.0721 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 18200443.0721 \cdot 1}{2\cdot\sqrt{32995303182626734400000000}}\cr\approx \mathstrut & 0.632099347506 \end{aligned}\] (assuming GRH)
Galois group
$C_2^7.\POPlus(4,3)$ (as 16T1870):
| A solvable group of order 73728 |
| The 83 conjugacy class representatives for $C_2^7.\POPlus(4,3)$ |
| Character table for $C_2^7.\POPlus(4,3)$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 8.8.87556810000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }^{2}{,}\,{\href{/padicField/3.4.0.1}{4} }$ | R | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.4.0.1}{4} }^{2}$ | ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{3}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{5}$ | ${\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.4.0.1}{4} }$ | ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.4.0.1}{4} }$ | ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{3}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.2.4a1.2 | $x^{4} + 2 x^{3} + 5 x^{2} + 8 x + 5$ | $2$ | $2$ | $4$ | $C_4$ | $$[2]^{2}$$ |
| 2.2.3.4a1.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 5 x + 1$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $$[\ ]_{3}^{6}$$ | |
| 2.2.3.4a1.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 5 x + 1$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $$[\ ]_{3}^{6}$$ | |
|
\(5\)
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 5.6.2.6a1.2 | $x^{12} + 2 x^{10} + 8 x^{9} + 3 x^{8} + 8 x^{7} + 22 x^{6} + 8 x^{5} + 5 x^{4} + 16 x^{3} + 4 x^{2} + 9$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $$[\ ]_{2}^{6}$$ | |
|
\(11\)
| $\Q_{11}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{11}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 11.3.1.0a1.1 | $x^{3} + 2 x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 11.3.1.0a1.1 | $x^{3} + 2 x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 11.2.2.2a1.2 | $x^{4} + 14 x^{3} + 53 x^{2} + 28 x + 15$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 11.2.2.2a1.2 | $x^{4} + 14 x^{3} + 53 x^{2} + 28 x + 15$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(269\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
| Deg $4$ | $4$ | $1$ | $3$ |