Normalized defining polynomial
\( x^{16} - 2 x^{15} + 305 x^{14} - 2029 x^{13} - 63708 x^{12} + 133747 x^{11} - 1977115 x^{10} - 11521320 x^{9} + 64929697 x^{8} - 653861602 x^{7} + 4834485125 x^{6} + 17850285859 x^{5} - 42242950419 x^{4} - 45734794022 x^{3} - 1240783907555 x^{2} + 1087153097008 x + 6042624679631 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(32625338328875805606560925727460997390073=61^{6}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $340.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{7676922731537843160175546848716454983615660306640185925414866670208587900025303292303222115202323827} a^{15} - \frac{2353234642435850491174503550451407566586241182297008688430469830335684753562467401577964509023464369}{7676922731537843160175546848716454983615660306640185925414866670208587900025303292303222115202323827} a^{14} - \frac{1367538324269645834467660650451019317131769021659583457287216694215477171204582290472643497362415874}{7676922731537843160175546848716454983615660306640185925414866670208587900025303292303222115202323827} a^{13} - \frac{2481922637938402736617011379458260309595360695926965496647452009008698330187471440578463883108146314}{7676922731537843160175546848716454983615660306640185925414866670208587900025303292303222115202323827} a^{12} - \frac{1271728486282286546124122822364218396111813813615220276461251942615874949957985449953817690382929009}{7676922731537843160175546848716454983615660306640185925414866670208587900025303292303222115202323827} a^{11} - \frac{571554663877070838519695012977375477375753597706105180799071289747395204485821461387120494488688087}{7676922731537843160175546848716454983615660306640185925414866670208587900025303292303222115202323827} a^{10} + \frac{2324959051498037960317979339922074222291143912222743373916272694779252410518981697542603439925714114}{7676922731537843160175546848716454983615660306640185925414866670208587900025303292303222115202323827} a^{9} + \frac{2216875783605185675731151785541834282227795587305720596803102393290971887354114603919282934777092283}{7676922731537843160175546848716454983615660306640185925414866670208587900025303292303222115202323827} a^{8} - \frac{2110583601177691196934517639934591447691451410690086975364900699181306414987535515306410991357330304}{7676922731537843160175546848716454983615660306640185925414866670208587900025303292303222115202323827} a^{7} - \frac{1392983582802297995065203253428850994573299246931707639261033582350848525382359581905767925980410200}{7676922731537843160175546848716454983615660306640185925414866670208587900025303292303222115202323827} a^{6} - \frac{2446765368070613514921009229320033146965767841217218417026055859995286412830640280783675529611306028}{7676922731537843160175546848716454983615660306640185925414866670208587900025303292303222115202323827} a^{5} - \frac{1505785291072856960881534579654760882078973695640153510115874172822431533860799392292369333602362271}{7676922731537843160175546848716454983615660306640185925414866670208587900025303292303222115202323827} a^{4} + \frac{207812143091151774629606732846533112977513542219441484405257573930951280804914280548776369591457591}{7676922731537843160175546848716454983615660306640185925414866670208587900025303292303222115202323827} a^{3} + \frac{1553262275798745119468409146108826849130067935497951625586037144333197589328226827251440199801803411}{7676922731537843160175546848716454983615660306640185925414866670208587900025303292303222115202323827} a^{2} - \frac{11049966462972290029759902833222942139557433038027986010639249465686480175227697241023105593024064}{7676922731537843160175546848716454983615660306640185925414866670208587900025303292303222115202323827} a + \frac{1365358228862786027430259990982094802734445021463804655631591263680070577783526399724990021080780639}{7676922731537843160175546848716454983615660306640185925414866670208587900025303292303222115202323827}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16504108066000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_8).D_4$ (as 16T306):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $(C_2\times C_8).D_4$ |
| Character table for $(C_2\times C_8).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| 97 | Data not computed | ||||||