Normalized defining polynomial
\( x^{16} - 4 x^{15} - 235 x^{14} + 1519 x^{13} + 8775 x^{12} - 108182 x^{11} + 345102 x^{10} + 2756222 x^{9} - 15226884 x^{8} - 116261286 x^{7} + 506360379 x^{6} + 1312007365 x^{5} - 7952268139 x^{4} - 15167591488 x^{3} + 75820476938 x^{2} + 243748531790 x + 183952147391 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(32625338328875805606560925727460997390073=61^{6}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $340.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{8} + \frac{1}{8} a^{7} + \frac{3}{8} a^{6} + \frac{3}{8} a^{4} + \frac{3}{8} a^{3} - \frac{3}{8} a^{2} + \frac{3}{8} a - \frac{1}{8}$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{5}{16} a^{6} + \frac{3}{16} a^{5} - \frac{1}{8} a^{4} - \frac{1}{2} a^{2} - \frac{3}{8} a - \frac{1}{16}$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{12} - \frac{1}{32} a^{11} - \frac{7}{32} a^{9} - \frac{3}{8} a^{8} + \frac{15}{32} a^{7} + \frac{1}{4} a^{6} + \frac{11}{32} a^{5} - \frac{7}{16} a^{4} + \frac{1}{4} a^{3} - \frac{7}{16} a^{2} + \frac{5}{32} a + \frac{1}{32}$, $\frac{1}{64} a^{14} - \frac{1}{32} a^{12} - \frac{1}{64} a^{11} - \frac{7}{64} a^{10} + \frac{13}{64} a^{9} + \frac{3}{64} a^{8} + \frac{23}{64} a^{7} - \frac{13}{64} a^{6} - \frac{3}{64} a^{5} - \frac{3}{32} a^{4} + \frac{13}{32} a^{3} - \frac{9}{64} a^{2} + \frac{3}{32} a - \frac{31}{64}$, $\frac{1}{116788758818451931433858396309444415535003820855397184543546923663086555874944} a^{15} + \frac{536293680036601299994762539541011152812959600847945034045278196551862661199}{116788758818451931433858396309444415535003820855397184543546923663086555874944} a^{14} - \frac{356017756319160073248446883402124887737748644518130657498560004241446909777}{58394379409225965716929198154722207767501910427698592271773461831543277937472} a^{13} - \frac{1326058874793725556127251349918973210564302057402301203154667365725529066351}{116788758818451931433858396309444415535003820855397184543546923663086555874944} a^{12} - \frac{878164153781653052765683744464682244546490654637239141458076995508914266691}{58394379409225965716929198154722207767501910427698592271773461831543277937472} a^{11} + \frac{1885782462582168860840036320756827082502311792045323594033681070935386818297}{29197189704612982858464599077361103883750955213849296135886730915771638968736} a^{10} - \frac{12643409981670093695054857624065290136436129007825384223288360112136340000565}{58394379409225965716929198154722207767501910427698592271773461831543277937472} a^{9} - \frac{480800601222464234063099972777226877772737188281553885254741959392542973211}{29197189704612982858464599077361103883750955213849296135886730915771638968736} a^{8} - \frac{7190032097203445281419572538911731642345236710517978152736921910980125339401}{29197189704612982858464599077361103883750955213849296135886730915771638968736} a^{7} - \frac{26776363760352354723023274311064707072708983214735287232213322223254058446051}{58394379409225965716929198154722207767501910427698592271773461831543277937472} a^{6} - \frac{36868559160601118698503221055501449247391647522943455370157351214314986641827}{116788758818451931433858396309444415535003820855397184543546923663086555874944} a^{5} + \frac{2327228154356048540680039154136647100829383476245821809200013716080393191871}{7299297426153245714616149769340275970937738803462324033971682728942909742184} a^{4} - \frac{47838069317781803127725879088116702283116458693721637578691111842471107432627}{116788758818451931433858396309444415535003820855397184543546923663086555874944} a^{3} + \frac{17801035236300008798275636940582101035379706454451144797780717484477739243823}{116788758818451931433858396309444415535003820855397184543546923663086555874944} a^{2} + \frac{57119898566605239751296332152809723525725072528332152160676489493571700823179}{116788758818451931433858396309444415535003820855397184543546923663086555874944} a - \frac{20582397712680354448976664164779942796562468453040276929645513263660336769073}{116788758818451931433858396309444415535003820855397184543546923663086555874944}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18569730490600 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n841 |
| Character table for t16n841 is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| 97 | Data not computed | ||||||