Properties

Label 16.8.32570165884...0000.1
Degree $16$
Signature $[8, 4]$
Discriminant $2^{24}\cdot 5^{8}\cdot 89^{6}$
Root discriminant $34.04$
Ramified primes $2, 5, 89$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $D_4:D_4$ (as 16T141)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![41, -396, 1396, -1844, -975, 5220, -3546, -2192, 3479, -1148, -206, 340, -165, 24, 6, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 6*x^14 + 24*x^13 - 165*x^12 + 340*x^11 - 206*x^10 - 1148*x^9 + 3479*x^8 - 2192*x^7 - 3546*x^6 + 5220*x^5 - 975*x^4 - 1844*x^3 + 1396*x^2 - 396*x + 41)
 
gp: K = bnfinit(x^16 - 4*x^15 + 6*x^14 + 24*x^13 - 165*x^12 + 340*x^11 - 206*x^10 - 1148*x^9 + 3479*x^8 - 2192*x^7 - 3546*x^6 + 5220*x^5 - 975*x^4 - 1844*x^3 + 1396*x^2 - 396*x + 41, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 6 x^{14} + 24 x^{13} - 165 x^{12} + 340 x^{11} - 206 x^{10} - 1148 x^{9} + 3479 x^{8} - 2192 x^{7} - 3546 x^{6} + 5220 x^{5} - 975 x^{4} - 1844 x^{3} + 1396 x^{2} - 396 x + 41 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3257016588442009600000000=2^{24}\cdot 5^{8}\cdot 89^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $34.04$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{3}$, $\frac{1}{38} a^{14} - \frac{3}{19} a^{13} + \frac{1}{38} a^{12} - \frac{9}{38} a^{11} + \frac{7}{38} a^{10} + \frac{2}{19} a^{9} + \frac{9}{38} a^{8} - \frac{9}{19} a^{7} - \frac{1}{38} a^{6} + \frac{8}{19} a^{5} - \frac{4}{19} a^{4} - \frac{7}{19} a^{3} + \frac{3}{19} a^{2} - \frac{3}{38} a + \frac{4}{19}$, $\frac{1}{8194839538727893498} a^{15} + \frac{41215554746715416}{4097419769363946749} a^{14} + \frac{575605163488490172}{4097419769363946749} a^{13} + \frac{661232613913026393}{8194839538727893498} a^{12} - \frac{589222352019434257}{4097419769363946749} a^{11} - \frac{64508867835604197}{431307344143573342} a^{10} + \frac{1635764534350740293}{8194839538727893498} a^{9} + \frac{940161188572784163}{4097419769363946749} a^{8} + \frac{3771887349790481689}{8194839538727893498} a^{7} + \frac{114368940277013644}{4097419769363946749} a^{6} - \frac{1719243858643303911}{4097419769363946749} a^{5} - \frac{19897827295876762}{4097419769363946749} a^{4} + \frac{1534893268594461853}{8194839538727893498} a^{3} - \frac{3892764299124455977}{8194839538727893498} a^{2} - \frac{2861097199638424125}{8194839538727893498} a - \frac{2749920627102117953}{8194839538727893498}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2495398.28801 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_4:D_4$ (as 16T141):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 16 conjugacy class representatives for $D_4:D_4$
Character table for $D_4:D_4$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), 4.4.142400.1, 4.4.2225.1, \(\Q(\sqrt{2}, \sqrt{5})\), 8.4.1804720640000.5 x2, 8.4.28198760000.1 x2, 8.8.20277760000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 8 siblings: data not computed
Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.12.1$x^{8} + 6 x^{6} + 8 x^{5} + 16$$2$$4$$12$$C_4\times C_2$$[3]^{4}$
2.8.12.1$x^{8} + 6 x^{6} + 8 x^{5} + 16$$2$$4$$12$$C_4\times C_2$$[3]^{4}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$89$89.4.0.1$x^{4} - x + 27$$1$$4$$0$$C_4$$[\ ]^{4}$
89.4.3.3$x^{4} + 267$$4$$1$$3$$C_4$$[\ ]_{4}$
89.4.3.3$x^{4} + 267$$4$$1$$3$$C_4$$[\ ]_{4}$
89.4.0.1$x^{4} - x + 27$$1$$4$$0$$C_4$$[\ ]^{4}$