Normalized defining polynomial
\( x^{16} + 776 x^{14} + 100792 x^{12} - 34006720 x^{10} - 5052241000 x^{8} + 454984179136 x^{6} + 20442712327776 x^{4} - 961880064552192 x^{2} + 8426089658305568 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3245499096990365116593765338925510950912=2^{67}\cdot 17^{6}\cdot 977^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $294.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 977$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{4} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{7816} a^{10} + \frac{97}{977} a^{8} - \frac{102}{977} a^{6} + \frac{87}{977} a^{4} - \frac{256}{977} a^{2}$, $\frac{1}{7816} a^{11} + \frac{97}{977} a^{9} - \frac{102}{977} a^{7} + \frac{87}{977} a^{5} - \frac{256}{977} a^{3}$, $\frac{1}{7636232} a^{12} - \frac{201}{7636232} a^{10} - \frac{82170}{954529} a^{8} + \frac{288389}{1909058} a^{6} - \frac{388381}{1909058} a^{4} - \frac{439}{977} a^{2}$, $\frac{1}{15272464} a^{13} + \frac{97}{1909058} a^{11} + \frac{12599}{1909058} a^{9} + \frac{89081}{3818116} a^{7} + \frac{368073}{1909058} a^{5} + \frac{141}{977} a^{3}$, $\frac{1}{66050914037041598758799006428862638057338030448} a^{14} + \frac{45469046056662804228358024297338890002}{4128182127315099922424937901803914878583626903} a^{12} + \frac{595292735684256355361105879405549767222783}{33025457018520799379399503214431319028669015224} a^{10} - \frac{233943213921415341733248388089321803727994177}{4128182127315099922424937901803914878583626903} a^{8} + \frac{501280266823860761173107965262176102341128009}{4128182127315099922424937901803914878583626903} a^{6} - \frac{1028933904765507003668892772504377270334035}{4225365534611156522441082806349964051774439} a^{4} - \frac{275466356348199840256432462548381947742}{617833825794875935435163445876584888401} a^{2} - \frac{68407677558285024368019128963585250}{260391160248307035224645922158835223}$, $\frac{1}{66050914037041598758799006428862638057338030448} a^{15} + \frac{45469046056662804228358024297338890002}{4128182127315099922424937901803914878583626903} a^{13} + \frac{595292735684256355361105879405549767222783}{33025457018520799379399503214431319028669015224} a^{11} - \frac{233943213921415341733248388089321803727994177}{4128182127315099922424937901803914878583626903} a^{9} + \frac{501280266823860761173107965262176102341128009}{4128182127315099922424937901803914878583626903} a^{7} - \frac{1028933904765507003668892772504377270334035}{4225365534611156522441082806349964051774439} a^{5} - \frac{275466356348199840256432462548381947742}{617833825794875935435163445876584888401} a^{3} - \frac{68407677558285024368019128963585250}{260391160248307035224645922158835223} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19271757965800 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n937 |
| Character table for t16n937 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.4352.1, 8.8.9697230848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 977 | Data not computed | ||||||