Normalized defining polynomial
\( x^{16} + 272 x^{14} - 81140 x^{12} - 9455408 x^{10} + 1098627660 x^{8} + 105806192448 x^{6} - 1502825730064 x^{4} - 142557119271712 x^{2} + 2106522414576392 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3245499096990365116593765338925510950912=2^{67}\cdot 17^{6}\cdot 977^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $294.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 977$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{1954} a^{10} + \frac{136}{977} a^{8} - \frac{49}{1954} a^{6} - \frac{1}{977} a^{4} + \frac{465}{977} a^{2}$, $\frac{1}{3908} a^{11} + \frac{68}{977} a^{9} + \frac{232}{977} a^{7} + \frac{488}{977} a^{5} - \frac{256}{977} a^{3}$, $\frac{1}{3818116} a^{12} + \frac{68}{954529} a^{10} - \frac{20285}{954529} a^{8} + \frac{44941}{1909058} a^{6} - \frac{247437}{954529} a^{4} - \frac{368}{977} a^{2}$, $\frac{1}{3818116} a^{13} + \frac{68}{954529} a^{11} - \frac{20285}{954529} a^{9} + \frac{44941}{1909058} a^{7} - \frac{247437}{954529} a^{5} - \frac{368}{977} a^{3}$, $\frac{1}{915869672053792941058887966600668092542953692} a^{14} - \frac{617177682332267548583222592130946769}{53874686591399584768169880388274593678997276} a^{12} - \frac{2590007536086324033685278528939141237281}{17612878308726787328055537819243617164287571} a^{10} - \frac{103910587804346137533452396067876075608927229}{457934836026896470529443983300334046271476846} a^{8} - \frac{8327728887004611821421384822602961642252291}{65419262289556638647063426185762006610210978} a^{6} + \frac{6776071841644115959261762023847735992535}{234357643821339033024280441811839327672199} a^{4} - \frac{34104856102847837962991177672629223179}{239874763379057352123112018231155913687} a^{2} + \frac{6856560896908881937756278893774717}{14442456702935598297496057452655543}$, $\frac{1}{915869672053792941058887966600668092542953692} a^{15} - \frac{617177682332267548583222592130946769}{53874686591399584768169880388274593678997276} a^{13} + \frac{7667480918834629482511227562077229487199}{70451513234907149312222151276974468657150284} a^{11} - \frac{72037948244644029042150255981465927045508165}{457934836026896470529443983300334046271476846} a^{9} + \frac{7206834932009861224759490177496102363447757}{65419262289556638647063426185762006610210978} a^{7} - \frac{110522687450714929228940014891187505800408}{234357643821339033024280441811839327672199} a^{5} - \frac{96958427674023561753694019706586146315}{239874763379057352123112018231155913687} a^{3} + \frac{6856560896908881937756278893774717}{14442456702935598297496057452655543} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10670340578800 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n937 |
| Character table for t16n937 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.4352.1, 8.8.9697230848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 977 | Data not computed | ||||||