Properties

Label 16.8.31602834266...6401.1
Degree $16$
Signature $[8, 4]$
Discriminant $17^{14}\cdot 137^{2}$
Root discriminant $22.07$
Ramified primes $17, 137$
Class number $1$
Class group Trivial
Galois group 16T1194

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-17, 0, 187, -459, 425, 17, -425, 459, -271, 53, 125, -133, 19, 31, -11, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 - 11*x^14 + 31*x^13 + 19*x^12 - 133*x^11 + 125*x^10 + 53*x^9 - 271*x^8 + 459*x^7 - 425*x^6 + 17*x^5 + 425*x^4 - 459*x^3 + 187*x^2 - 17)
 
gp: K = bnfinit(x^16 - 2*x^15 - 11*x^14 + 31*x^13 + 19*x^12 - 133*x^11 + 125*x^10 + 53*x^9 - 271*x^8 + 459*x^7 - 425*x^6 + 17*x^5 + 425*x^4 - 459*x^3 + 187*x^2 - 17, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} - 11 x^{14} + 31 x^{13} + 19 x^{12} - 133 x^{11} + 125 x^{10} + 53 x^{9} - 271 x^{8} + 459 x^{7} - 425 x^{6} + 17 x^{5} + 425 x^{4} - 459 x^{3} + 187 x^{2} - 17 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3160283426693396036401=17^{14}\cdot 137^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $22.07$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $17, 137$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{478} a^{14} - \frac{193}{478} a^{13} + \frac{15}{478} a^{12} - \frac{197}{478} a^{11} - \frac{103}{478} a^{10} - \frac{165}{478} a^{9} - \frac{61}{478} a^{8} + \frac{89}{478} a^{7} - \frac{83}{478} a^{6} + \frac{169}{478} a^{5} - \frac{17}{478} a^{4} - \frac{63}{478} a^{3} + \frac{79}{478} a^{2} - \frac{211}{478} a - \frac{201}{478}$, $\frac{1}{5828254} a^{15} + \frac{5393}{5828254} a^{14} + \frac{575797}{5828254} a^{13} + \frac{2343099}{5828254} a^{12} - \frac{2792665}{5828254} a^{11} - \frac{500955}{5828254} a^{10} + \frac{1718721}{5828254} a^{9} + \frac{2052211}{5828254} a^{8} + \frac{860829}{5828254} a^{7} + \frac{1944217}{5828254} a^{6} - \frac{965593}{5828254} a^{5} + \frac{1267753}{5828254} a^{4} - \frac{1757159}{5828254} a^{3} - \frac{1510591}{5828254} a^{2} + \frac{760399}{5828254} a + \frac{1051379}{2914127}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 58047.590611 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1194:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 40 conjugacy class representatives for t16n1194
Character table for t16n1194 is not computed

Intermediate fields

\(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$17$17.8.7.3$x^{8} - 17$$8$$1$$7$$C_8$$[\ ]_{8}$
17.8.7.3$x^{8} - 17$$8$$1$$7$$C_8$$[\ ]_{8}$
$137$$\Q_{137}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{137}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{137}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{137}$$x + 3$$1$$1$$0$Trivial$[\ ]$
137.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
137.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
137.2.1.1$x^{2} - 137$$2$$1$$1$$C_2$$[\ ]_{2}$
137.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
137.2.1.1$x^{2} - 137$$2$$1$$1$$C_2$$[\ ]_{2}$
137.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$