Normalized defining polynomial
\( x^{16} - 3 x^{15} - 8 x^{14} + 58 x^{13} - 514 x^{12} + 1270 x^{11} - 325 x^{10} - 4635 x^{9} + 65772 x^{8} - 166563 x^{7} - 166320 x^{6} + 1031825 x^{5} - 130335 x^{4} - 2529391 x^{3} - 4525330 x^{2} + 8481940 x + 4029307 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(31236842166910780816202985728=2^{8}\cdot 17^{15}\cdot 6529^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 6529$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{1776549692290727147127245049840981568960635965273617321} a^{15} - \frac{727174006400586670577303513895250267545617580829014172}{1776549692290727147127245049840981568960635965273617321} a^{14} - \frac{604786865463823204122836443269562762731791041119544629}{1776549692290727147127245049840981568960635965273617321} a^{13} - \frac{865158660077188743531505010778252437570529170593680175}{1776549692290727147127245049840981568960635965273617321} a^{12} + \frac{808078500996631842786687169496951221102117369837477985}{1776549692290727147127245049840981568960635965273617321} a^{11} + \frac{26526298254576695244088126158912410148370976221306274}{1776549692290727147127245049840981568960635965273617321} a^{10} - \frac{673632660400109922682394355296624883319704282976588222}{1776549692290727147127245049840981568960635965273617321} a^{9} + \frac{489448832732417975341633616033183035387775468711618550}{1776549692290727147127245049840981568960635965273617321} a^{8} + \frac{320726247801863844481238339110798390110704985317863147}{1776549692290727147127245049840981568960635965273617321} a^{7} + \frac{1555783349174613222304035719220688776410460914155383}{26515667049115330554137985818522112969561730824979363} a^{6} + \frac{433607850340444801686182334040529053369453951807177676}{1776549692290727147127245049840981568960635965273617321} a^{5} + \frac{273931494190036040799325468062159195105685772196691709}{1776549692290727147127245049840981568960635965273617321} a^{4} - \frac{419154686802151092111766013945610936890641324065776147}{1776549692290727147127245049840981568960635965273617321} a^{3} + \frac{786868023496493802315216541438280681727823034084230522}{1776549692290727147127245049840981568960635965273617321} a^{2} + \frac{805903204928299576064937823816036409992341951081488190}{1776549692290727147127245049840981568960635965273617321} a - \frac{503550039407688189018257505542593742877830916884559934}{1776549692290727147127245049840981568960635965273617321}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 80374572.4423 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 40 conjugacy class representatives for t16n1223 |
| Character table for t16n1223 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.4 | $x^{8} + 2 x^{7} + 2 x^{6} + 8 x^{3} + 48$ | $2$ | $4$ | $8$ | $C_8$ | $[2]^{4}$ |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 17 | Data not computed | ||||||
| 6529 | Data not computed | ||||||