Normalized defining polynomial
\( x^{16} - 5 x^{15} + 8 x^{14} - 91 x^{13} - 242 x^{12} + 768 x^{11} - 3636 x^{10} + 14151 x^{9} + 65279 x^{8} - 3888 x^{7} + 258154 x^{6} - 85776 x^{5} - 3147512 x^{4} - 3724040 x^{3} - 6494240 x^{2} - 14923984 x - 7366864 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(31236842166910780816202985728=2^{8}\cdot 17^{15}\cdot 6529^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 6529$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{13} + \frac{1}{8} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{8} + \frac{3}{8} a^{7} + \frac{3}{8} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{346492396975328743011315206095421065474605141563048} a^{15} + \frac{11980733794485912091401653953836058462901318037601}{346492396975328743011315206095421065474605141563048} a^{14} + \frac{595758177345500125023508182274186597009184589915}{173246198487664371505657603047710532737302570781524} a^{13} + \frac{29478624347714513249867116520552358014491091217001}{346492396975328743011315206095421065474605141563048} a^{12} - \frac{4758458867923440894137977742696989123694091162993}{43311549621916092876414400761927633184325642695381} a^{11} - \frac{7822523928321951716847481003134630648172640399709}{86623099243832185752828801523855266368651285390762} a^{10} + \frac{344359439129218048094739691600508679608984521605}{86623099243832185752828801523855266368651285390762} a^{9} + \frac{24058107219643919724059449811028998448829073509563}{346492396975328743011315206095421065474605141563048} a^{8} - \frac{139770407860406535085528941222807458921275756341135}{346492396975328743011315206095421065474605141563048} a^{7} + \frac{68518273674331330468221617523919180079596845537303}{173246198487664371505657603047710532737302570781524} a^{6} - \frac{71925364548228295477179593868941973699046051860117}{173246198487664371505657603047710532737302570781524} a^{5} - \frac{18575113697623281812010546625880728677619839048012}{43311549621916092876414400761927633184325642695381} a^{4} - \frac{15314961940700687973043315942624435378942493715789}{86623099243832185752828801523855266368651285390762} a^{3} + \frac{11951188408216714604021418476886097115859709716413}{43311549621916092876414400761927633184325642695381} a^{2} + \frac{16254234689271959234554976478850150569225105397042}{43311549621916092876414400761927633184325642695381} a - \frac{14431471745461256362327901086359993596002694254441}{43311549621916092876414400761927633184325642695381}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 74121395.6108 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 40 conjugacy class representatives for t16n1223 |
| Character table for t16n1223 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.4 | $x^{8} + 2 x^{7} + 2 x^{6} + 8 x^{3} + 48$ | $2$ | $4$ | $8$ | $C_8$ | $[2]^{4}$ |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 17 | Data not computed | ||||||
| 6529 | Data not computed | ||||||