Properties

Label 16.8.31130283153...0000.1
Degree $16$
Signature $[8, 4]$
Discriminant $2^{24}\cdot 5^{8}\cdot 41^{6}$
Root discriminant $25.46$
Ramified primes $2, 5, 41$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2\wr C_2^2$ (as 16T128)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-41, 738, -887, -2266, 3167, 1698, -2696, -812, 877, 514, -120, -228, 20, 48, -8, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 - 8*x^14 + 48*x^13 + 20*x^12 - 228*x^11 - 120*x^10 + 514*x^9 + 877*x^8 - 812*x^7 - 2696*x^6 + 1698*x^5 + 3167*x^4 - 2266*x^3 - 887*x^2 + 738*x - 41)
 
gp: K = bnfinit(x^16 - 4*x^15 - 8*x^14 + 48*x^13 + 20*x^12 - 228*x^11 - 120*x^10 + 514*x^9 + 877*x^8 - 812*x^7 - 2696*x^6 + 1698*x^5 + 3167*x^4 - 2266*x^3 - 887*x^2 + 738*x - 41, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} - 8 x^{14} + 48 x^{13} + 20 x^{12} - 228 x^{11} - 120 x^{10} + 514 x^{9} + 877 x^{8} - 812 x^{7} - 2696 x^{6} + 1698 x^{5} + 3167 x^{4} - 2266 x^{3} - 887 x^{2} + 738 x - 41 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(31130283153817600000000=2^{24}\cdot 5^{8}\cdot 41^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $25.46$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{11} + \frac{2}{5} a^{9} + \frac{1}{5} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{25} a^{12} + \frac{2}{25} a^{11} - \frac{2}{25} a^{10} - \frac{2}{5} a^{9} + \frac{8}{25} a^{8} + \frac{6}{25} a^{7} - \frac{9}{25} a^{5} + \frac{1}{25} a^{4} - \frac{3}{25} a^{3} + \frac{11}{25} a^{2} + \frac{12}{25} a + \frac{4}{25}$, $\frac{1}{125} a^{13} - \frac{2}{125} a^{12} + \frac{2}{25} a^{11} - \frac{7}{125} a^{10} - \frac{62}{125} a^{9} - \frac{16}{125} a^{8} + \frac{26}{125} a^{7} + \frac{11}{125} a^{6} + \frac{42}{125} a^{5} - \frac{17}{125} a^{4} - \frac{22}{125} a^{3} + \frac{3}{125} a^{2} - \frac{9}{125} a + \frac{14}{125}$, $\frac{1}{125} a^{14} + \frac{1}{125} a^{12} + \frac{3}{125} a^{11} + \frac{9}{125} a^{10} + \frac{7}{25} a^{9} - \frac{21}{125} a^{8} - \frac{17}{125} a^{7} - \frac{11}{125} a^{6} + \frac{12}{125} a^{5} - \frac{36}{125} a^{4} - \frac{26}{125} a^{3} - \frac{8}{125} a^{2} - \frac{14}{125} a + \frac{58}{125}$, $\frac{1}{1889541208180625} a^{15} - \frac{1057676268674}{377908241636125} a^{14} + \frac{5629153519452}{1889541208180625} a^{13} - \frac{19799310626624}{1889541208180625} a^{12} - \frac{60824467944976}{1889541208180625} a^{11} + \frac{81362168953283}{1889541208180625} a^{10} - \frac{902458382469483}{1889541208180625} a^{9} + \frac{489540117798697}{1889541208180625} a^{8} - \frac{246658979976}{1608120177175} a^{7} + \frac{805149952594293}{1889541208180625} a^{6} - \frac{68880607860264}{1889541208180625} a^{5} + \frac{1961637502697}{1889541208180625} a^{4} - \frac{161594955117264}{377908241636125} a^{3} + \frac{321398395811794}{1889541208180625} a^{2} - \frac{850012936464681}{1889541208180625} a - \frac{14691643870091}{1889541208180625}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 185632.837161 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\wr C_2^2$ (as 16T128):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 16 conjugacy class representatives for $C_2\wr C_2^2$
Character table for $C_2\wr C_2^2$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), 4.4.2624.1, 4.4.65600.2, \(\Q(\sqrt{2}, \sqrt{5})\), 8.4.176437760000.4, 8.8.4303360000.1, 8.4.104960000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 8 siblings: data not computed
Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.12.1$x^{8} + 6 x^{6} + 8 x^{5} + 16$$2$$4$$12$$C_4\times C_2$$[3]^{4}$
2.8.12.1$x^{8} + 6 x^{6} + 8 x^{5} + 16$$2$$4$$12$$C_4\times C_2$$[3]^{4}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$41$41.2.1.2$x^{2} + 246$$2$$1$$1$$C_2$$[\ ]_{2}$
41.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
41.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
41.2.1.2$x^{2} + 246$$2$$1$$1$$C_2$$[\ ]_{2}$
41.4.2.1$x^{4} + 943 x^{2} + 242064$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
41.4.2.1$x^{4} + 943 x^{2} + 242064$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$