Properties

Label 16.8.31115288855...0000.1
Degree $16$
Signature $[8, 4]$
Discriminant $2^{16}\cdot 5^{8}\cdot 19^{3}\cdot 29^{6}\cdot 31^{3}$
Root discriminant $52.28$
Ramified primes $2, 5, 19, 29, 31$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1477

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![495349, 0, -290377, 0, -109489, 0, 36962, 0, 6015, 0, -1149, 0, -131, 0, 10, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 10*x^14 - 131*x^12 - 1149*x^10 + 6015*x^8 + 36962*x^6 - 109489*x^4 - 290377*x^2 + 495349)
 
gp: K = bnfinit(x^16 + 10*x^14 - 131*x^12 - 1149*x^10 + 6015*x^8 + 36962*x^6 - 109489*x^4 - 290377*x^2 + 495349, 1)
 

Normalized defining polynomial

\( x^{16} + 10 x^{14} - 131 x^{12} - 1149 x^{10} + 6015 x^{8} + 36962 x^{6} - 109489 x^{4} - 290377 x^{2} + 495349 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3111528885555034854400000000=2^{16}\cdot 5^{8}\cdot 19^{3}\cdot 29^{6}\cdot 31^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $52.28$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 19, 29, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{10} - \frac{4}{9} a^{8} + \frac{1}{3} a^{6} + \frac{1}{9} a^{4} + \frac{1}{3} a^{2} - \frac{2}{9}$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{11} - \frac{4}{9} a^{9} + \frac{1}{3} a^{7} + \frac{1}{9} a^{5} + \frac{1}{3} a^{3} - \frac{2}{9} a$, $\frac{1}{461780162398155717} a^{14} + \frac{8299973152160363}{153926720799385239} a^{12} - \frac{1564594819802021}{461780162398155717} a^{10} - \frac{4977053401043518}{24304219073587143} a^{8} + \frac{141092322744145531}{461780162398155717} a^{6} + \frac{95292599178245140}{461780162398155717} a^{4} - \frac{7100337800166893}{24304219073587143} a^{2} + \frac{77595033825740}{838076519778867}$, $\frac{1}{461780162398155717} a^{15} + \frac{8299973152160363}{153926720799385239} a^{13} - \frac{1564594819802021}{461780162398155717} a^{11} - \frac{4977053401043518}{24304219073587143} a^{9} + \frac{141092322744145531}{461780162398155717} a^{7} + \frac{95292599178245140}{461780162398155717} a^{5} - \frac{7100337800166893}{24304219073587143} a^{3} + \frac{77595033825740}{838076519778867} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 54080712.0493 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1477:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2048
The 74 conjugacy class representatives for t16n1477 are not computed
Character table for t16n1477 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.725.1, 8.8.309593125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ $16$ R ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ R R ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ $16$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
$19$19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.4.3.1$x^{4} + 76$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
19.8.0.1$x^{8} - x + 2$$1$$8$$0$$C_8$$[\ ]^{8}$
$29$29.4.2.2$x^{4} - 29 x^{2} + 2523$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$31$$\Q_{31}$$x + 7$$1$$1$$0$Trivial$[\ ]$
$\Q_{31}$$x + 7$$1$$1$$0$Trivial$[\ ]$
31.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
31.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
31.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
31.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
31.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
31.4.3.2$x^{4} - 31$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$