Normalized defining polynomial
\( x^{16} + 17 x^{14} - 3233 x^{12} + 20587 x^{10} + 1213530 x^{8} - 8974035 x^{6} - 80735935 x^{4} + 43746642 x^{2} + 15499969 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(31087867512274251337747808514764310961=31^{10}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $220.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{248} a^{12} + \frac{6}{31} a^{10} + \frac{11}{124} a^{8} - \frac{59}{248} a^{6} - \frac{1}{2} a^{5} + \frac{35}{248} a^{4} - \frac{1}{8} a^{2} - \frac{1}{2} a - \frac{1}{8}$, $\frac{1}{248} a^{13} + \frac{6}{31} a^{11} + \frac{11}{124} a^{9} - \frac{59}{248} a^{7} + \frac{35}{248} a^{5} + \frac{3}{8} a^{3} + \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{2130384164130577139356099888} a^{14} - \frac{1}{496} a^{13} + \frac{1985165673262120379522487}{2130384164130577139356099888} a^{12} - \frac{3}{31} a^{11} + \frac{49866448165913844655938669}{1065192082065288569678049944} a^{10} + \frac{51}{248} a^{9} + \frac{449917435129444697337034479}{2130384164130577139356099888} a^{8} - \frac{65}{496} a^{7} - \frac{14780358289409704223631285}{1065192082065288569678049944} a^{6} - \frac{159}{496} a^{5} + \frac{124969490878264484491329685}{1065192082065288569678049944} a^{4} + \frac{1}{16} a^{3} - \frac{90366368939190372105715}{291195211062134655461468} a^{2} + \frac{5}{16} a + \frac{10259257537838120616631629}{68722069810663778688906448}$, $\frac{1}{270558788844583296698224685776} a^{15} + \frac{3613865462151652535266186}{16909924302786456043639042861} a^{13} - \frac{1}{496} a^{12} + \frac{18965616163551118928777438481}{135279394422291648349112342888} a^{11} - \frac{3}{31} a^{10} + \frac{18188801705007032571411011369}{270558788844583296698224685776} a^{9} + \frac{51}{248} a^{8} - \frac{28355938866661795686780889105}{270558788844583296698224685776} a^{7} - \frac{65}{496} a^{6} + \frac{65583151724881950071292408153}{270558788844583296698224685776} a^{5} + \frac{89}{496} a^{4} - \frac{64206015501129784698349719}{147927167219564404974425744} a^{3} - \frac{7}{16} a^{2} + \frac{17553275463582921825262548}{545481429122143743343194931} a - \frac{3}{16}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4127183437040 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n817 |
| Character table for t16n817 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.179859661768855001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 31 | Data not computed | ||||||
| 41 | Data not computed | ||||||