Normalized defining polynomial
\( x^{16} - 6 x^{15} - 7 x^{14} + 288 x^{13} - 5235 x^{12} + 1684 x^{11} + 148983 x^{10} - 229221 x^{9} - 1154321 x^{8} + 2910067 x^{7} + 1809688 x^{6} - 11779338 x^{5} + 8819154 x^{4} + 11362659 x^{3} - 22542750 x^{2} + 13122331 x - 2586361 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(31087867512274251337747808514764310961=31^{10}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $220.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{92} a^{14} - \frac{1}{23} a^{13} - \frac{1}{46} a^{11} + \frac{5}{92} a^{10} - \frac{19}{46} a^{9} - \frac{3}{23} a^{8} - \frac{45}{92} a^{7} - \frac{37}{92} a^{6} + \frac{1}{46} a^{5} - \frac{43}{92} a^{4} + \frac{5}{46} a^{3} + \frac{7}{92} a^{2} - \frac{5}{92} a + \frac{13}{92}$, $\frac{1}{15763916968637724879282058847785028787764829091256} a^{15} - \frac{19534493959942732082843452814461000998877794269}{15763916968637724879282058847785028787764829091256} a^{14} + \frac{910210029431829530798418099839086745962449957113}{3940979242159431219820514711946257196941207272814} a^{13} + \frac{514727762053030179556243936431088762292785874027}{3940979242159431219820514711946257196941207272814} a^{12} + \frac{3512501250232785672410710589100579456121979549021}{15763916968637724879282058847785028787764829091256} a^{11} + \frac{4674954969142412843927781257024566835982963747925}{15763916968637724879282058847785028787764829091256} a^{10} - \frac{1003327939218853263823641266892554831756959365545}{3940979242159431219820514711946257196941207272814} a^{9} - \frac{2798366334187085245635002973936261472030097618869}{15763916968637724879282058847785028787764829091256} a^{8} + \frac{1932289732637132367114643809490163866855223790357}{7881958484318862439641029423892514393882414545628} a^{7} + \frac{3870771508217218010957163786117337018443503793233}{15763916968637724879282058847785028787764829091256} a^{6} + \frac{4874714216853004050415794640988703945509316402469}{15763916968637724879282058847785028787764829091256} a^{5} + \frac{140539442319493705619169688394245639004753223737}{685387694288596733881828645555870816859340395272} a^{4} - \frac{2200745487916050811533630986531328760497191814347}{15763916968637724879282058847785028787764829091256} a^{3} + \frac{531582084226699082466065629822787657355655389945}{1970489621079715609910257355973128598470603636407} a^{2} - \frac{3145553591070905377807182769497969329602132077607}{7881958484318862439641029423892514393882414545628} a + \frac{6863993392732649167543386124622896886522539948781}{15763916968637724879282058847785028787764829091256}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4136587602960 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n817 |
| Character table for t16n817 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.179859661768855001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $31$ | 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.4.3.2 | $x^{4} - 31$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 31.4.3.2 | $x^{4} - 31$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 41 | Data not computed | ||||||