Normalized defining polynomial
\( x^{16} - 3 x^{15} - 17 x^{14} - 652 x^{13} - 2640 x^{12} + 4292 x^{11} - 2603 x^{10} + 577894 x^{9} + 166968 x^{8} + 4917135 x^{7} + 4209376 x^{6} - 8766217 x^{5} + 15633220 x^{4} - 86630330 x^{3} - 10934242 x^{2} + 5095648 x + 631471 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3090063795858197568077038853384324833=47^{4}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $190.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $47, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{61} a^{13} + \frac{16}{61} a^{12} + \frac{2}{61} a^{11} - \frac{3}{61} a^{10} - \frac{14}{61} a^{9} - \frac{27}{61} a^{8} + \frac{1}{61} a^{7} + \frac{21}{61} a^{6} + \frac{15}{61} a^{5} + \frac{6}{61} a^{4} + \frac{8}{61} a^{3} - \frac{28}{61} a^{2} - \frac{11}{61} a + \frac{13}{61}$, $\frac{1}{61} a^{14} - \frac{10}{61} a^{12} + \frac{26}{61} a^{11} - \frac{27}{61} a^{10} + \frac{14}{61} a^{9} + \frac{6}{61} a^{8} + \frac{5}{61} a^{7} - \frac{16}{61} a^{6} + \frac{10}{61} a^{5} - \frac{27}{61} a^{4} + \frac{27}{61} a^{3} + \frac{10}{61} a^{2} + \frac{6}{61} a - \frac{25}{61}$, $\frac{1}{228171636724849016068111039138049681318387982032249167994072003} a^{15} + \frac{1521370723672449070358662317646190857432849124204439024442770}{228171636724849016068111039138049681318387982032249167994072003} a^{14} - \frac{1713210725112293480614126857414723093456242584687688647650638}{228171636724849016068111039138049681318387982032249167994072003} a^{13} + \frac{21327473636967104282057528750028691195809246774960974156453484}{228171636724849016068111039138049681318387982032249167994072003} a^{12} - \frac{113278927386581548301563814906103305134432822208892960529200325}{228171636724849016068111039138049681318387982032249167994072003} a^{11} - \frac{38586841136810171270980326793589878912249710142612462929264151}{228171636724849016068111039138049681318387982032249167994072003} a^{10} - \frac{256757145353900623788415778167876591916245916791273872386423}{3740518634833590427346082608820486578989966918561461770394623} a^{9} + \frac{42543886782671722397631396162063862165255050487030618882106422}{228171636724849016068111039138049681318387982032249167994072003} a^{8} - \frac{92436706473428124504897389161505323549487950394361819340414665}{228171636724849016068111039138049681318387982032249167994072003} a^{7} + \frac{56143314892825520506591480773711319098836372798942940981300033}{228171636724849016068111039138049681318387982032249167994072003} a^{6} - \frac{104635912362486475218358583291652469502381313150286570520685774}{228171636724849016068111039138049681318387982032249167994072003} a^{5} + \frac{91049024232322319975552551946161462406824747822344750297962266}{228171636724849016068111039138049681318387982032249167994072003} a^{4} - \frac{102936846019248948879947970408934082120976219821473171826304942}{228171636724849016068111039138049681318387982032249167994072003} a^{3} + \frac{31911309651124766918790601455885192338998226281879230967716127}{228171636724849016068111039138049681318387982032249167994072003} a^{2} - \frac{49029906601951512682083640422176389563559573245767346664733645}{228171636724849016068111039138049681318387982032249167994072003} a + \frac{15863830000518598785272084681124086276006075886123544768610275}{228171636724849016068111039138049681318387982032249167994072003}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 378443100977 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_8$ (as 16T104):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2^3.C_8$ |
| Character table for $C_2^3.C_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $47$ | 47.4.2.2 | $x^{4} - 47 x^{2} + 28717$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 47.4.2.2 | $x^{4} - 47 x^{2} + 28717$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 47.4.0.1 | $x^{4} - x + 39$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 47.4.0.1 | $x^{4} - x + 39$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97 | Data not computed | ||||||