Normalized defining polynomial
\( x^{16} - 3 x^{15} - 114 x^{14} + 900 x^{13} - 2931 x^{12} - 21510 x^{11} + 319146 x^{10} - 2247134 x^{9} + 8400619 x^{8} - 16164554 x^{7} + 84204306 x^{6} - 557059493 x^{5} + 1493038571 x^{4} - 895327284 x^{3} - 2914304292 x^{2} + 5483733054 x - 2806619339 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3090063795858197568077038853384324833=47^{4}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $190.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $47, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{1413628494353550092930460545782743559529573267555705944244895543358} a^{15} + \frac{292541661997411536372524920245085678396818197533126464495602954473}{1413628494353550092930460545782743559529573267555705944244895543358} a^{14} - \frac{31896029930867427902575104900047022454869447242432877856243778959}{706814247176775046465230272891371779764786633777852972122447771679} a^{13} + \frac{42310524275195302446695940035478873137836726103941440139339943389}{706814247176775046465230272891371779764786633777852972122447771679} a^{12} - \frac{181304477570533562630126693493633887002092135440340861176190135759}{706814247176775046465230272891371779764786633777852972122447771679} a^{11} + \frac{32688027978818429379655457624260867897300205196498149522857855091}{706814247176775046465230272891371779764786633777852972122447771679} a^{10} - \frac{417198160492527674839065151350943745339434455033855589020164300807}{1413628494353550092930460545782743559529573267555705944244895543358} a^{9} + \frac{115248458891151647591761820844041440508906961922495235420249283981}{706814247176775046465230272891371779764786633777852972122447771679} a^{8} + \frac{64133034322848074121314995966503865627174152358681431224189741307}{706814247176775046465230272891371779764786633777852972122447771679} a^{7} - \frac{236667989701052621246424447532258138434101862115526458200038952805}{706814247176775046465230272891371779764786633777852972122447771679} a^{6} + \frac{159975978705040958644970643724045357073901421225884317997638255929}{706814247176775046465230272891371779764786633777852972122447771679} a^{5} - \frac{254621623772012110161863828651973520202326936003406068587741858879}{706814247176775046465230272891371779764786633777852972122447771679} a^{4} - \frac{330159508787301176637481323147781842644031424404251701245548906966}{706814247176775046465230272891371779764786633777852972122447771679} a^{3} + \frac{132992987761909691362467447888681752189198678935904189630440971196}{706814247176775046465230272891371779764786633777852972122447771679} a^{2} + \frac{46454438672975709966034008795432768443918672802885132151624766952}{706814247176775046465230272891371779764786633777852972122447771679} a - \frac{503093205977229575602456864745924709194645955827393236366547523375}{1413628494353550092930460545782743559529573267555705944244895543358}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 459261691864 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $47$ | 47.4.0.1 | $x^{4} - x + 39$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 47.4.2.2 | $x^{4} - 47 x^{2} + 28717$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 47.4.0.1 | $x^{4} - x + 39$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 47.4.2.2 | $x^{4} - 47 x^{2} + 28717$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 97 | Data not computed | ||||||