Normalized defining polynomial
\( x^{16} - 8 x^{15} - 16 x^{14} + 252 x^{13} - 1021 x^{12} + 2486 x^{11} + 22853 x^{10} - 130094 x^{9} + 41755 x^{8} + 628878 x^{7} - 2436777 x^{6} + 4548148 x^{5} - 2534855 x^{4} - 1509366 x^{3} + 9752220 x^{2} - 8384456 x + 4669264 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(307757468400156944014204800390625=5^{8}\cdot 13^{2}\cdot 29^{6}\cdot 97^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $107.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 29, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{6} a^{9} + \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{1}{3}$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{6} a^{2} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{348} a^{12} - \frac{1}{58} a^{11} - \frac{5}{116} a^{10} + \frac{7}{174} a^{9} - \frac{11}{174} a^{8} - \frac{1}{87} a^{7} - \frac{5}{116} a^{6} + \frac{1}{87} a^{5} + \frac{6}{29} a^{4} - \frac{14}{29} a^{3} - \frac{55}{116} a^{2} - \frac{40}{87} a - \frac{17}{87}$, $\frac{1}{348} a^{13} + \frac{7}{348} a^{11} - \frac{3}{58} a^{10} + \frac{1}{87} a^{9} - \frac{5}{87} a^{8} + \frac{77}{348} a^{7} - \frac{43}{174} a^{6} - \frac{5}{87} a^{5} - \frac{13}{174} a^{4} - \frac{13}{348} a^{3} + \frac{21}{58} a^{2} - \frac{25}{87} a + \frac{43}{87}$, $\frac{1}{3121005791527395096} a^{14} - \frac{7}{3121005791527395096} a^{13} - \frac{1242452739113701}{1040335263842465032} a^{12} + \frac{22364149304046709}{3121005791527395096} a^{11} - \frac{8457912190049349}{260083815960616258} a^{10} - \frac{8372984710462817}{120038684289515196} a^{9} - \frac{196633578742117073}{3121005791527395096} a^{8} + \frac{86018348153417255}{1040335263842465032} a^{7} + \frac{102143394625127363}{780251447881848774} a^{6} + \frac{162687602985773897}{520167631921232516} a^{5} + \frac{1327854009736531405}{3121005791527395096} a^{4} + \frac{188276680017310479}{1040335263842465032} a^{3} - \frac{52780962614067881}{120038684289515196} a^{2} - \frac{78201082805950075}{390125723940924387} a - \frac{135279807217526113}{390125723940924387}$, $\frac{1}{3467437434386935951656} a^{15} + \frac{137}{866859358596733987914} a^{14} + \frac{98341868731317073}{288953119532244662638} a^{13} + \frac{37114570458323075}{577906239064489325276} a^{12} - \frac{5512583477796733651}{315221584944266904696} a^{11} - \frac{366901394308637021}{26268465412022242058} a^{10} + \frac{8586051108512060383}{1155812478128978650552} a^{9} + \frac{105129114716854171309}{1733718717193467975828} a^{8} - \frac{689787043973237265229}{3467437434386935951656} a^{7} - \frac{2225685499233964275}{288953119532244662638} a^{6} + \frac{955014462804192089879}{3467437434386935951656} a^{5} - \frac{45790714992213755569}{433429679298366993957} a^{4} + \frac{73656350002205663053}{3467437434386935951656} a^{3} - \frac{368978980442982804395}{866859358596733987914} a^{2} + \frac{257730115378885639117}{866859358596733987914} a + \frac{269317683531406630}{14945851010288517033}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 27609215854.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 55 conjugacy class representatives for t16n1220 are not computed |
| Character table for t16n1220 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{485}) \), \(\Q(\sqrt{97}) \), 4.4.6821525.1, 4.4.725.1, \(\Q(\sqrt{5}, \sqrt{97})\), 8.8.46533203325625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.8.6.1 | $x^{8} - 203 x^{4} + 68121$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $97$ | 97.8.4.1 | $x^{8} + 432814 x^{4} - 912673 x^{2} + 46831989649$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 97.8.4.1 | $x^{8} + 432814 x^{4} - 912673 x^{2} + 46831989649$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |