/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^16 - 5*x^14 + 4*x^12 + 15*x^10 - 49*x^8 + 60*x^6 - 26*x^4 + 1, 16, 1174, [8, 4], 3074049931884765625, [5, 11, 101], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, 1/2*a^8 - 1/2*a^7 - 1/2*a^5 - 1/2*a^4 - 1/2, 1/2*a^9 - 1/2*a^7 - 1/2*a^6 - 1/2*a^4 - 1/2*a - 1/2, 1/2*a^10 - 1/2*a^4 - 1/2*a^2 - 1/2*a - 1/2, 1/2*a^11 - 1/2*a^5 - 1/2*a^3 - 1/2*a^2 - 1/2*a, 1/2*a^12 - 1/2*a^6 - 1/2*a^4 - 1/2*a^3 - 1/2*a^2, 1/2*a^13 - 1/2*a^7 - 1/2*a^5 - 1/2*a^4 - 1/2*a^3, 1/1402*a^14 + 22/701*a^12 + 57/1402*a^10 + 2/701*a^8 - 1/2*a^7 + 147/1402*a^6 + 253/1402*a^4 - 247/1402*a^2 - 1/2*a - 93/701, 1/1402*a^15 + 22/701*a^13 + 57/1402*a^11 + 2/701*a^9 - 277/701*a^7 - 224/701*a^5 - 1/2*a^4 - 247/1402*a^3 - 1/2*a^2 - 93/701*a - 1/2], 0, 1, [], 0, [ (111)/(701)*a^(15) - (169)/(701)*a^(14) - (747)/(1402)*a^(13) + (1251)/(1402)*a^(12) - (665)/(1402)*a^(11) + (181)/(701)*a^(10) + (1846)/(701)*a^(9) - (4857)/(1402)*a^(8) - (2610)/(701)*a^(7) + (9899)/(1402)*a^(6) - (615)/(1402)*a^(5) - (6301)/(1402)*a^(4) + (6153)/(1402)*a^(3) - (317)/(701)*a^(2) - (1335)/(1402)*a - (923)/(1402) , (280)/(701)*a^(15) + (10)/(701)*a^(14) - (2699)/(1402)*a^(13) + (179)/(1402)*a^(12) + (1777)/(1402)*a^(11) - (963)/(1402)*a^(10) + (8549)/(1402)*a^(9) + (40)/(701)*a^(8) - (12817)/(701)*a^(7) + (1470)/(701)*a^(6) + (14760)/(701)*a^(5) - (3779)/(701)*a^(4) - (11439)/(1402)*a^(3) + (5575)/(1402)*a^(2) + (289)/(1402)*a + (243)/(701) , (363)/(701)*a^(15) - (1553)/(701)*a^(13) + (362)/(701)*a^(11) + (5658)/(701)*a^(9) - (13935)/(701)*a^(7) + (11925)/(701)*a^(5) - (634)/(701)*a^(3) - (1624)/(701)*a , (363)/(701)*a^(14) - (1553)/(701)*a^(12) + (362)/(701)*a^(10) + (5658)/(701)*a^(8) - (13935)/(701)*a^(6) + (11925)/(701)*a^(4) - (634)/(701)*a^(2) - (923)/(701) , (141)/(1402)*a^(15) - (141)/(1402)*a^(14) - (403)/(701)*a^(13) + (403)/(701)*a^(12) + (1027)/(1402)*a^(11) - (1027)/(1402)*a^(10) + (983)/(701)*a^(9) - (983)/(701)*a^(8) - (8715)/(1402)*a^(7) + (8715)/(1402)*a^(6) + (6270)/(701)*a^(5) - (6270)/(701)*a^(4) - (6787)/(1402)*a^(3) + (3744)/(701)*a^(2) - (289)/(1402)*a - (1113)/(1402) , (1187)/(1402)*a^(15) - (222)/(701)*a^(14) - (2627)/(701)*a^(13) + (2195)/(1402)*a^(12) + (1765)/(1402)*a^(11) - (737)/(701)*a^(10) + (9384)/(701)*a^(9) - (3692)/(701)*a^(8) - (23864)/(701)*a^(7) + (20955)/(1402)*a^(6) + (22223)/(701)*a^(5) - (11302)/(701)*a^(4) - (2539)/(701)*a^(3) + (2960)/(701)*a^(2) - (2437)/(701)*a + (1969)/(1402) , (419)/(1402)*a^(15) + (81)/(1402)*a^(14) - (1893)/(1402)*a^(13) - (321)/(701)*a^(12) + (375)/(701)*a^(11) + (556)/(701)*a^(10) + (6583)/(1402)*a^(9) + (863)/(701)*a^(8) - (16919)/(1402)*a^(7) - (3510)/(701)*a^(6) + (8490)/(701)*a^(5) + (10679)/(1402)*a^(4) - (3951)/(1402)*a^(3) - (2643)/(701)*a^(2) + (289)/(701)*a - (345)/(1402) , (141)/(1402)*a^(15) - (867)/(1402)*a^(14) - (403)/(701)*a^(13) + (1956)/(701)*a^(12) + (1027)/(1402)*a^(11) - (1751)/(1402)*a^(10) + (983)/(701)*a^(9) - (6641)/(701)*a^(8) - (8715)/(1402)*a^(7) + (36585)/(1402)*a^(6) + (6270)/(701)*a^(5) - (18195)/(701)*a^(4) - (6787)/(1402)*a^(3) + (4378)/(701)*a^(2) - (289)/(1402)*a + (2135)/(1402) , (169)/(701)*a^(15) - (363)/(1402)*a^(14) - (1251)/(1402)*a^(13) + (1553)/(1402)*a^(12) - (181)/(701)*a^(11) - (181)/(701)*a^(10) + (4857)/(1402)*a^(9) - (2829)/(701)*a^(8) - (9899)/(1402)*a^(7) + (13935)/(1402)*a^(6) + (6301)/(1402)*a^(5) - (11925)/(1402)*a^(4) + (317)/(701)*a^(3) + (1335)/(1402)*a^(2) + (2325)/(1402)*a + (111)/(701) , (289)/(1402)*a^(15) + (141)/(1402)*a^(14) - (652)/(701)*a^(13) - (403)/(701)*a^(12) + (175)/(701)*a^(11) + (1027)/(1402)*a^(10) + (2681)/(701)*a^(9) + (983)/(701)*a^(8) - (12195)/(1402)*a^(7) - (8715)/(1402)*a^(6) + (8625)/(1402)*a^(5) + (6270)/(701)*a^(4) + (2513)/(701)*a^(3) - (6787)/(1402)*a^(2) - (3043)/(701)*a - (289)/(1402) , (661)/(1402)*a^(15) + (363)/(1402)*a^(14) - (1581)/(701)*a^(13) - (1553)/(1402)*a^(12) + (963)/(701)*a^(11) + (181)/(701)*a^(10) + (10355)/(1402)*a^(9) + (2829)/(701)*a^(8) - (14857)/(701)*a^(7) - (13935)/(1402)*a^(6) + (32641)/(1402)*a^(5) + (11925)/(1402)*a^(4) - (10449)/(1402)*a^(3) - (1335)/(1402)*a^(2) + (215)/(701)*a - (923)/(1402) ], 1288.86099323, [[x^2 - x - 1, 1], [x^4 - 2*x^3 - 4*x^2 + 5*x + 5, 1], [x^8 - 3*x^6 - 8*x^5 + 4*x^4 + 12*x^3 - 6*x^2 - 2*x + 1, 1], [x^8 - 3*x^7 + x^6 + 2*x^5 - x^4 + 2*x^3 + x^2 - 3*x + 1, 1], [x^8 - x^7 - 4*x^6 - x^5 + 6*x^4 + 15*x^3 - 10*x^2 - 10*x + 5, 1]]]