Normalized defining polynomial
\( x^{16} - x^{15} - 7 x^{14} + 11 x^{13} - 10 x^{12} - 15 x^{11} + 74 x^{10} - 88 x^{9} + 106 x^{8} - 38 x^{7} + 69 x^{6} + 78 x^{5} - 232 x^{4} - 61 x^{3} - 186 x^{2} - 151 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(305906112217041015625=5^{12}\cdot 11^{6}\cdot 29^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{6} a^{12} + \frac{1}{6} a^{10} - \frac{1}{3} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{6} - \frac{1}{6} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{11} + \frac{1}{3} a^{10} + \frac{1}{6} a^{9} + \frac{1}{6} a^{7} + \frac{1}{6} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{6} a^{2} + \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{18} a^{14} + \frac{1}{18} a^{12} - \frac{5}{18} a^{10} + \frac{2}{9} a^{9} + \frac{5}{18} a^{8} + \frac{1}{6} a^{7} + \frac{4}{9} a^{6} + \frac{1}{3} a^{5} - \frac{4}{9} a^{4} + \frac{1}{18} a^{3} + \frac{5}{18} a^{2} - \frac{1}{9}$, $\frac{1}{81562098081760686} a^{15} + \frac{1124604970865282}{40781049040880343} a^{14} + \frac{2386019302810465}{81562098081760686} a^{13} - \frac{84203486782852}{3137003772375411} a^{12} + \frac{7201735832163889}{81562098081760686} a^{11} - \frac{978319272657092}{40781049040880343} a^{10} + \frac{6660849193496837}{27187366027253562} a^{9} + \frac{35981241556127765}{81562098081760686} a^{8} - \frac{7547027838329702}{40781049040880343} a^{7} + \frac{1635782064735697}{40781049040880343} a^{6} - \frac{16622495967177736}{40781049040880343} a^{5} - \frac{11902722309353197}{81562098081760686} a^{4} + \frac{523873152104207}{2091335848250274} a^{3} - \frac{16632720262369118}{40781049040880343} a^{2} - \frac{15529261296586738}{40781049040880343} a - \frac{17709624200821627}{40781049040880343}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14534.4950882 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T542):
| A solvable group of order 256 |
| The 40 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.39875.2, 4.4.725.1, 4.2.1375.1, 8.6.144546875.1, 8.6.699606875.1, 8.4.1590015625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |