Normalized defining polynomial
\( x^{16} - x^{15} - 94 x^{14} + 165 x^{13} - 126 x^{12} - 8447 x^{11} + 74882 x^{10} + 474192 x^{9} + 2077146 x^{8} - 24295974 x^{7} - 51262919 x^{6} + 345170910 x^{5} - 377718884 x^{4} - 339713070 x^{3} + 7219747165 x^{2} - 10291908080 x + 5972069905 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(30417192973888736937325752197265625=5^{12}\cdot 11^{3}\cdot 101^{6}\cdot 4451^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $142.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 101, 4451$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{5} a^{8} - \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{11} + \frac{2}{5} a^{10} - \frac{1}{5} a^{9} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{14} - \frac{2}{5} a^{10} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4}$, $\frac{1}{1243541281931939259739718052740244876398898027536435380337962692057529572755} a^{15} - \frac{102505343835484075741205164225354361898638947327087911274464456924761778197}{1243541281931939259739718052740244876398898027536435380337962692057529572755} a^{14} + \frac{59159454506284518399508105989592948270148021637082508927343951919432752976}{1243541281931939259739718052740244876398898027536435380337962692057529572755} a^{13} + \frac{46695861425806486382580452394804044212496778021856936641362053544964286768}{1243541281931939259739718052740244876398898027536435380337962692057529572755} a^{12} + \frac{400234338650469045447527027278505640328096303453610471946055579980182420168}{1243541281931939259739718052740244876398898027536435380337962692057529572755} a^{11} + \frac{35323096836793912568906897471548671752694230269104078769406450089933487010}{248708256386387851947943610548048975279779605507287076067592538411505914551} a^{10} - \frac{50509578725177867893085692649016440143347188800595204453092004049939669624}{248708256386387851947943610548048975279779605507287076067592538411505914551} a^{9} + \frac{304571084514123756642633061179241961930768031303240509202598162324581548348}{1243541281931939259739718052740244876398898027536435380337962692057529572755} a^{8} + \frac{252426235614580955972841538760045010078227498307636968781971006882372219744}{1243541281931939259739718052740244876398898027536435380337962692057529572755} a^{7} + \frac{63599977024109038710498242279312166035893183562201037252163828607953255328}{248708256386387851947943610548048975279779605507287076067592538411505914551} a^{6} - \frac{348291019232599915586044821464795042589785881464490630983111278210179581357}{1243541281931939259739718052740244876398898027536435380337962692057529572755} a^{5} - \frac{56147593691105319994019363155879295444897473557153287006433617141307824126}{1243541281931939259739718052740244876398898027536435380337962692057529572755} a^{4} - \frac{21203455901495970670698424688916987561975807264709950085810672804853470551}{248708256386387851947943610548048975279779605507287076067592538411505914551} a^{3} - \frac{72831419565183135369282388569364738568115863481079953957046277921567619291}{248708256386387851947943610548048975279779605507287076067592538411505914551} a^{2} - \frac{91648266122414794735837882638847266570134535475266886599277400188687713220}{248708256386387851947943610548048975279779605507287076067592538411505914551} a + \frac{104006241120676878078247618297626920243637071632857063493082767999982791863}{248708256386387851947943610548048975279779605507287076067592538411505914551}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 236820451265 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 64 conjugacy class representatives for t16n1643 are not computed |
| Character table for t16n1643 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.2525.1, 8.8.16098453125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | $16$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $101$ | 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.8.4.1 | $x^{8} + 244824 x^{4} - 1030301 x^{2} + 14984697744$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 4451 | Data not computed | ||||||