Normalized defining polynomial
\( x^{16} - 2 x^{15} + 38 x^{14} - 123 x^{13} + 207 x^{12} - 1108 x^{11} - 51646 x^{10} + 116979 x^{9} - 581363 x^{8} - 1596582 x^{7} + 13887186 x^{6} + 3385851 x^{5} + 27981317 x^{4} + 105176879 x^{3} - 927639173 x^{2} - 564236981 x + 2658144721 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(30417192973888736937325752197265625=5^{12}\cdot 11^{3}\cdot 101^{6}\cdot 4451^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $142.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 101, 4451$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{1595} a^{14} + \frac{96}{1595} a^{13} + \frac{60}{319} a^{12} - \frac{199}{1595} a^{11} - \frac{111}{319} a^{10} + \frac{486}{1595} a^{9} - \frac{8}{145} a^{8} + \frac{204}{1595} a^{7} - \frac{558}{1595} a^{6} - \frac{15}{319} a^{5} - \frac{386}{1595} a^{4} + \frac{218}{1595} a^{3} - \frac{113}{1595} a^{2} - \frac{598}{1595} a + \frac{416}{1595}$, $\frac{1}{2016889728832925107303324900520324403518227854113607084258144775} a^{15} - \frac{31922538783427567606706593745377628848816328069663078154313}{2016889728832925107303324900520324403518227854113607084258144775} a^{14} + \frac{450341900201647987836143631179703557809383874677559917627816531}{2016889728832925107303324900520324403518227854113607084258144775} a^{13} + \frac{449866124201970235479191895828332493775862993790299054632573686}{2016889728832925107303324900520324403518227854113607084258144775} a^{12} - \frac{959026026606553934030208780223433052311120114589184209511543139}{2016889728832925107303324900520324403518227854113607084258144775} a^{11} - \frac{496761272657773907045038877302292289051229927296568973322259379}{2016889728832925107303324900520324403518227854113607084258144775} a^{10} + \frac{237787145984933560213804426820912688807258227348189829932948998}{2016889728832925107303324900520324403518227854113607084258144775} a^{9} - \frac{603388182259766227276129006366734647880209403373784865600910024}{2016889728832925107303324900520324403518227854113607084258144775} a^{8} - \frac{977136284314109785954678618833325936900193818216211306703051874}{2016889728832925107303324900520324403518227854113607084258144775} a^{7} - \frac{881619792857693139730639626089575687080331993631774813897769718}{2016889728832925107303324900520324403518227854113607084258144775} a^{6} + \frac{520267176018923023843401858453622955047700084701588825414490059}{2016889728832925107303324900520324403518227854113607084258144775} a^{5} + \frac{50500272983169828015485222719280628397376741495763305956120002}{2016889728832925107303324900520324403518227854113607084258144775} a^{4} + \frac{151504723134897948151537027287564731666707399412679737045022689}{403377945766585021460664980104064880703645570822721416851628955} a^{3} + \frac{538163153157897677017042307189426558971059875858549532718114609}{2016889728832925107303324900520324403518227854113607084258144775} a^{2} + \frac{419027354581876850002772651371128487063620797403844452883452228}{2016889728832925107303324900520324403518227854113607084258144775} a - \frac{717183701012324946977980381309922970019686801420186205255644814}{2016889728832925107303324900520324403518227854113607084258144775}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 243134769063 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 64 conjugacy class representatives for t16n1643 are not computed |
| Character table for t16n1643 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.2525.1, 8.8.16098453125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | $16$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $101$ | 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.8.4.1 | $x^{8} + 244824 x^{4} - 1030301 x^{2} + 14984697744$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 4451 | Data not computed | ||||||