Normalized defining polynomial
\( x^{16} - 4 x^{15} + 24 x^{14} - 244 x^{13} - 714 x^{12} - 2012 x^{11} - 15764 x^{10} + 41228 x^{9} + 98082 x^{8} + 12812 x^{7} + 579816 x^{6} + 2228892 x^{5} - 1022814 x^{4} - 15272956 x^{3} + 2510564 x^{2} + 9102284 x + 2091041 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(303413777032806400000000000000=2^{44}\cdot 5^{14}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{6} a^{12} + \frac{1}{6} a^{11} + \frac{1}{6} a^{9} + \frac{1}{6} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a + \frac{1}{6}$, $\frac{1}{66} a^{13} + \frac{5}{66} a^{12} - \frac{7}{33} a^{11} - \frac{4}{33} a^{10} - \frac{7}{66} a^{9} + \frac{3}{22} a^{8} + \frac{3}{11} a^{6} - \frac{1}{6} a^{5} - \frac{23}{66} a^{4} + \frac{1}{33} a^{3} + \frac{5}{11} a^{2} + \frac{19}{66} a - \frac{23}{66}$, $\frac{1}{66} a^{14} + \frac{5}{66} a^{12} + \frac{7}{66} a^{11} - \frac{1}{6} a^{9} - \frac{1}{66} a^{8} - \frac{13}{33} a^{7} + \frac{3}{22} a^{6} - \frac{2}{11} a^{5} + \frac{7}{66} a^{4} + \frac{3}{22} a^{3} - \frac{16}{33} a^{2} - \frac{19}{66} a + \frac{9}{22}$, $\frac{1}{6954065209462880731060491840104889429680755693516926834} a^{15} + \frac{90720163426079358405973481182921233562262445156353}{1159010868243813455176748640017481571613459282252821139} a^{14} + \frac{33580858430820103393224249913642696737829294646820575}{6954065209462880731060491840104889429680755693516926834} a^{13} - \frac{11384258782884319503319745826110852627087738349024869}{632187746314807339187317440009535402698250517592447894} a^{12} + \frac{228950667988240507447078630730330861857331556330922147}{6954065209462880731060491840104889429680755693516926834} a^{11} + \frac{991483980062618454536423294125826785544353104050226553}{6954065209462880731060491840104889429680755693516926834} a^{10} + \frac{196283857238434846573223140721168184612064322263551729}{2318021736487626910353497280034963143226918564505642278} a^{9} - \frac{382122729746205742643346079435354201967307184545703327}{6954065209462880731060491840104889429680755693516926834} a^{8} + \frac{3367141064315952291064822905832576789694928291362601707}{6954065209462880731060491840104889429680755693516926834} a^{7} - \frac{11308006716226965950971419303997264009015894623961690}{28735806650673060872150792727706154668102296254202177} a^{6} + \frac{892966722109059685177885946155756913132945001227019515}{2318021736487626910353497280034963143226918564505642278} a^{5} + \frac{588929773433363708342211992834198195019957156930408119}{6954065209462880731060491840104889429680755693516926834} a^{4} - \frac{150521237411871355071352869966432635379600611101911391}{2318021736487626910353497280034963143226918564505642278} a^{3} + \frac{3429380214694957719459372787210698621889158315861050723}{6954065209462880731060491840104889429680755693516926834} a^{2} - \frac{489582793752974350543683117489956626546261126332344695}{2318021736487626910353497280034963143226918564505642278} a + \frac{2174340976680334749253480118022273051610960409853904423}{6954065209462880731060491840104889429680755693516926834}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 320896343.571 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times D_4).C_2^3$ (as 16T315):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $(C_2\times D_4).C_2^3$ |
| Character table for $(C_2\times D_4).C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{10}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), 4.4.8000.1, \(\Q(\zeta_{20})^+\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\zeta_{40})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 41 | Data not computed | ||||||