Normalized defining polynomial
\( x^{16} - 4 x^{15} - 36 x^{14} + 196 x^{13} - 644 x^{12} + 2448 x^{11} + 13656 x^{10} - 181492 x^{9} + 603497 x^{8} + 407312 x^{7} - 7407844 x^{6} + 21863772 x^{5} - 38194794 x^{4} + 40597764 x^{3} - 15956176 x^{2} - 14234616 x + 11325721 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(303413777032806400000000000000=2^{44}\cdot 5^{14}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{143} a^{14} + \frac{4}{13} a^{13} - \frac{36}{143} a^{12} + \frac{63}{143} a^{11} + \frac{48}{143} a^{10} - \frac{3}{13} a^{9} + \frac{71}{143} a^{8} + \frac{6}{143} a^{7} - \frac{49}{143} a^{6} + \frac{3}{11} a^{5} - \frac{46}{143} a^{4} + \frac{10}{143} a^{3} + \frac{40}{143} a^{2} + \frac{2}{11} a + \frac{4}{13}$, $\frac{1}{32233857917447709839022159966250532578164804227818200620147} a^{15} + \frac{42524521734790725442783550086721815738780377681648105566}{32233857917447709839022159966250532578164804227818200620147} a^{14} + \frac{3259032646665499076750036207362402698489309340550596487325}{32233857917447709839022159966250532578164804227818200620147} a^{13} - \frac{7697815821172347012217005442044185785193905873614282409321}{32233857917447709839022159966250532578164804227818200620147} a^{12} + \frac{11005869369330330909552544525268369229363143955822534510393}{32233857917447709839022159966250532578164804227818200620147} a^{11} - \frac{11765619217194216486831814440882001253464206776575768225877}{32233857917447709839022159966250532578164804227818200620147} a^{10} - \frac{10517224068953658464641951161568308168932298140679938656713}{32233857917447709839022159966250532578164804227818200620147} a^{9} + \frac{8026608987200002233329329354942178383410001846249711585357}{32233857917447709839022159966250532578164804227818200620147} a^{8} + \frac{1421175993271303401441215743586604268255507031203601998321}{32233857917447709839022159966250532578164804227818200620147} a^{7} + \frac{6208127268211468640509166872428290232196178820378984961405}{32233857917447709839022159966250532578164804227818200620147} a^{6} + \frac{5481570863647348723840150120593831172096349531868807133846}{32233857917447709839022159966250532578164804227818200620147} a^{5} + \frac{85544432994225520240511742232714717578776632311031867665}{32233857917447709839022159966250532578164804227818200620147} a^{4} - \frac{3147506397797327941216881787523105904242187489097915181032}{32233857917447709839022159966250532578164804227818200620147} a^{3} - \frac{11184282450811267886571387807572106405368491481813856096637}{32233857917447709839022159966250532578164804227818200620147} a^{2} + \frac{8596803748325589425710962589992582170651366301567870458693}{32233857917447709839022159966250532578164804227818200620147} a + \frac{563946604862085302035679676200786857767232789288348373155}{2930350719767973621729287269659139325287709475256200056377}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 325563554.761 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times D_4).C_2^3$ (as 16T315):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $(C_2\times D_4).C_2^3$ |
| Character table for $(C_2\times D_4).C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{10}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\zeta_{20})^+\), 4.4.8000.1, \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\zeta_{40})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 41 | Data not computed | ||||||