Properties

Label 16.8.30202607782...5625.4
Degree $16$
Signature $[8, 4]$
Discriminant $5^{10}\cdot 13^{4}\cdot 101^{8}$
Root discriminant $52.18$
Ramified primes $5, 13, 101$
Class number $4$ (GRH)
Class group $[2, 2]$ (GRH)
Galois group $C_4.C_2^2:D_4$ (as 16T305)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2495, -1330, 7285, -2790, -11256, 16485, 20736, -7863, -12074, -2500, -572, -493, -103, -14, -4, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 - 4*x^14 - 14*x^13 - 103*x^12 - 493*x^11 - 572*x^10 - 2500*x^9 - 12074*x^8 - 7863*x^7 + 20736*x^6 + 16485*x^5 - 11256*x^4 - 2790*x^3 + 7285*x^2 - 1330*x - 2495)
 
gp: K = bnfinit(x^16 - 2*x^15 - 4*x^14 - 14*x^13 - 103*x^12 - 493*x^11 - 572*x^10 - 2500*x^9 - 12074*x^8 - 7863*x^7 + 20736*x^6 + 16485*x^5 - 11256*x^4 - 2790*x^3 + 7285*x^2 - 1330*x - 2495, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} - 4 x^{14} - 14 x^{13} - 103 x^{12} - 493 x^{11} - 572 x^{10} - 2500 x^{9} - 12074 x^{8} - 7863 x^{7} + 20736 x^{6} + 16485 x^{5} - 11256 x^{4} - 2790 x^{3} + 7285 x^{2} - 1330 x - 2495 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3020260778265976146103515625=5^{10}\cdot 13^{4}\cdot 101^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $52.18$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 13, 101$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} + \frac{1}{5} a^{13} - \frac{2}{5} a^{12} - \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{1}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4}$, $\frac{1}{1946008243279169799471685259328335} a^{15} - \frac{107016122531354931272790238300507}{1946008243279169799471685259328335} a^{14} - \frac{9410202859741484244112466540896}{389201648655833959894337051865667} a^{13} - \frac{144303686976708609019683726820704}{389201648655833959894337051865667} a^{12} + \frac{950190833031734225146920896799904}{1946008243279169799471685259328335} a^{11} - \frac{339417690822853946813502068049867}{1946008243279169799471685259328335} a^{10} - \frac{93489852278378496324687359596743}{1946008243279169799471685259328335} a^{9} - \frac{50716385309798408077819434743446}{1946008243279169799471685259328335} a^{8} - \frac{108237012536799349402427336522554}{1946008243279169799471685259328335} a^{7} - \frac{784445127776227856006949296382827}{1946008243279169799471685259328335} a^{6} - \frac{10978661063586763429393748968877}{1946008243279169799471685259328335} a^{5} - \frac{405859226100336944237027620788077}{1946008243279169799471685259328335} a^{4} + \frac{88485554041029036888977447563002}{389201648655833959894337051865667} a^{3} + \frac{193191032522670918898985655102681}{389201648655833959894337051865667} a^{2} + \frac{112978467998093559476227547866632}{389201648655833959894337051865667} a + \frac{172445975670951121780840288698221}{389201648655833959894337051865667}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 26110058.6468 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4.C_2^2:D_4$ (as 16T305):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 128
The 29 conjugacy class representatives for $C_4.C_2^2:D_4$
Character table for $C_4.C_2^2:D_4$ is not computed

Intermediate fields

\(\Q(\sqrt{101}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{505}) \), 4.4.51005.1 x2, 4.4.2525.1 x2, \(\Q(\sqrt{5}, \sqrt{101})\), 8.8.65037750625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$13$13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.2$x^{4} - 13 x^{2} + 338$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
101Data not computed