Normalized defining polynomial
\( x^{16} - 1020 x^{14} - 583899 x^{12} + 311883224 x^{10} + 87007049988 x^{8} - 18614015293632 x^{6} - 2580057810918438 x^{4} + 390453736425761706 x^{2} + 2716193998733560817 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29972682638651894650701256229375114805248=2^{16}\cdot 17^{15}\cdot 19993^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $338.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 19993$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{39986} a^{10} - \frac{510}{19993} a^{8} + \frac{15891}{39986} a^{6} - \frac{3788}{19993} a^{4} + \frac{13113}{39986} a^{2} - \frac{1}{2}$, $\frac{1}{39986} a^{11} - \frac{510}{19993} a^{9} + \frac{15891}{39986} a^{7} - \frac{3788}{19993} a^{5} + \frac{13113}{39986} a^{3} - \frac{1}{2} a$, $\frac{1}{799440098} a^{12} - \frac{510}{399720049} a^{10} - \frac{583899}{799440098} a^{8} + \frac{155941612}{399720049} a^{6} + \frac{267799355}{799440098} a^{4} - \frac{12593}{39986} a^{2}$, $\frac{1}{799440098} a^{13} - \frac{510}{399720049} a^{11} - \frac{583899}{799440098} a^{9} + \frac{155941612}{399720049} a^{7} + \frac{267799355}{799440098} a^{5} - \frac{12593}{39986} a^{3}$, $\frac{1}{9102851086208716918083616520253316993714226371098266} a^{14} + \frac{1905274390415824182626353573911857931427851}{4551425543104358459041808260126658496857113185549133} a^{12} + \frac{50516777518893516773305837345872173391174262453}{9102851086208716918083616520253316993714226371098266} a^{10} + \frac{1199702103828044399315637184959230848722557961771129}{9102851086208716918083616520253316993714226371098266} a^{8} - \frac{710015753262730191439944719765983457881975899723526}{4551425543104358459041808260126658496857113185549133} a^{6} - \frac{221620866687200978204367683744305357670668315403}{455301909978928470868984970752429199905678305962} a^{4} + \frac{5328481886658681560101278310458235071182412}{11386533036035824310233205890872535385026717} a^{2} - \frac{46536566730291383032531220524616295849}{1139051971793710229603681877744464100938}$, $\frac{1}{9102851086208716918083616520253316993714226371098266} a^{15} + \frac{1905274390415824182626353573911857931427851}{4551425543104358459041808260126658496857113185549133} a^{13} + \frac{50516777518893516773305837345872173391174262453}{9102851086208716918083616520253316993714226371098266} a^{11} + \frac{1199702103828044399315637184959230848722557961771129}{9102851086208716918083616520253316993714226371098266} a^{9} - \frac{710015753262730191439944719765983457881975899723526}{4551425543104358459041808260126658496857113185549133} a^{7} - \frac{221620866687200978204367683744305357670668315403}{455301909978928470868984970752429199905678305962} a^{5} + \frac{5328481886658681560101278310458235071182412}{11386533036035824310233205890872535385026717} a^{3} - \frac{46536566730291383032531220524616295849}{1139051971793710229603681877744464100938} a$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9606579923990 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n841 |
| Character table for t16n841 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.4 | $x^{8} + 2 x^{7} + 2 x^{6} + 8 x^{3} + 48$ | $2$ | $4$ | $8$ | $C_8$ | $[2]^{4}$ |
| 2.8.8.5 | $x^{8} + 2 x^{7} + 8 x^{2} + 16$ | $2$ | $4$ | $8$ | $C_8:C_2$ | $[2, 2]^{4}$ | |
| 17 | Data not computed | ||||||
| 19993 | Data not computed | ||||||