Normalized defining polynomial
\( x^{16} - 4 x^{15} + 49 x^{14} - 154 x^{13} - 17602 x^{12} - 55852 x^{11} - 772287 x^{10} - 6058156 x^{9} - 9080099 x^{8} + 26256544 x^{7} + 384213103 x^{6} + 778367308 x^{5} - 361748214 x^{4} - 3849727644 x^{3} - 16369099293 x^{2} + 14761359476 x + 25815211523 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29875440679295555535575643982688502833521=31^{12}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $338.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{17158} a^{14} - \frac{404}{8579} a^{13} + \frac{843}{8579} a^{12} + \frac{1687}{8579} a^{11} - \frac{1627}{8579} a^{10} + \frac{1105}{17158} a^{9} - \frac{69}{746} a^{8} + \frac{8055}{17158} a^{7} - \frac{3918}{8579} a^{6} - \frac{8057}{17158} a^{5} - \frac{1767}{8579} a^{4} - \frac{4253}{17158} a^{3} + \frac{1786}{8579} a^{2} - \frac{6069}{17158} a - \frac{311}{746}$, $\frac{1}{126280329476680880373878061699718985544156339739805453309397353500486039901726} a^{15} - \frac{444310675339436600706590319272986972895399203681038306442565665096605860}{63140164738340440186939030849859492772078169869902726654698676750243019950863} a^{14} + \frac{15411004400304517121970633930086477383764491367410517676943589359269623571300}{63140164738340440186939030849859492772078169869902726654698676750243019950863} a^{13} - \frac{13314586569210176375724530528618527666283583426301571851794864487747173763944}{63140164738340440186939030849859492772078169869902726654698676750243019950863} a^{12} + \frac{9772995800207978763323616562265658207567166079049026660739615924984166735676}{63140164738340440186939030849859492772078169869902726654698676750243019950863} a^{11} - \frac{9523812103167721795953458292492227168857393799912182204416599868232601495285}{63140164738340440186939030849859492772078169869902726654698676750243019950863} a^{10} - \frac{29243240506130543837192374863733030254324106220451356517992049766039912310285}{126280329476680880373878061699718985544156339739805453309397353500486039901726} a^{9} - \frac{2010151090221087587833779679757910094571128771655664477304174113507198517855}{126280329476680880373878061699718985544156339739805453309397353500486039901726} a^{8} - \frac{10861091616569639599278038383176363030872463213892228594592421852118539097144}{63140164738340440186939030849859492772078169869902726654698676750243019950863} a^{7} - \frac{37000343307761047923542117806574090001386280271780613713220317752578795353227}{126280329476680880373878061699718985544156339739805453309397353500486039901726} a^{6} + \frac{53776523971897546732436292008560644143244536544330124831300058134039548828011}{126280329476680880373878061699718985544156339739805453309397353500486039901726} a^{5} - \frac{672477528638628460810409643579583364964496905113062240316421336249616994181}{126280329476680880373878061699718985544156339739805453309397353500486039901726} a^{4} + \frac{27083951232543276111934701818839320602729358715321611136095916575558678296447}{63140164738340440186939030849859492772078169869902726654698676750243019950863} a^{3} + \frac{49681907235818352174776914342149198285678760545790517485194302980083875246877}{126280329476680880373878061699718985544156339739805453309397353500486039901726} a^{2} - \frac{7404775192129572124007587948942545459537671797277299621246906899048234654945}{126280329476680880373878061699718985544156339739805453309397353500486039901726} a + \frac{659042046002223256677550277772272932819255496977837867122607228911703011967}{5490449107681777407559915726074738501919840858252411013452058847847219126162}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 122379871312000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T565):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.179859661768855001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $31$ | 31.4.3.2 | $x^{4} - 31$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 31.4.3.2 | $x^{4} - 31$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 31.4.3.2 | $x^{4} - 31$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 31.4.3.2 | $x^{4} - 31$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $41$ | 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |