Normalized defining polynomial
\( x^{16} - 7 x^{15} - 132 x^{14} + 1877 x^{13} - 1604 x^{12} - 90470 x^{11} + 765081 x^{10} - 3538362 x^{9} - 6534866 x^{8} + 215410535 x^{7} - 1104467286 x^{6} + 1608355766 x^{5} + 2955391761 x^{4} - 9056589516 x^{3} + 2366911254 x^{2} + 2013183756 x - 686260787 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29875440679295555535575643982688502833521=31^{12}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $338.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{47797458824031419062928831453720089493461693435662247091592187815672308762} a^{15} - \frac{11190709505622082729662083017685420231628672104575268078499468054686532439}{47797458824031419062928831453720089493461693435662247091592187815672308762} a^{14} - \frac{88774665233586333403327449043423627687248851180389366131324359805376597}{446705222654499243578774125735701770966931714351983617678431661828713166} a^{13} + \frac{7365728473873499987210734941736419126470572782988218604086578882539611357}{47797458824031419062928831453720089493461693435662247091592187815672308762} a^{12} - \frac{22221188045730768293226754431372753806753086514523945421397513882422752825}{47797458824031419062928831453720089493461693435662247091592187815672308762} a^{11} - \frac{18028566090789355801694322855813346906868410426364805415461331271648705275}{47797458824031419062928831453720089493461693435662247091592187815672308762} a^{10} - \frac{17555020010227608444431864807945515296214141584221034669365938762229623963}{47797458824031419062928831453720089493461693435662247091592187815672308762} a^{9} - \frac{10001572921352925641926138105233026089826085861294229240838299529273081127}{47797458824031419062928831453720089493461693435662247091592187815672308762} a^{8} + \frac{13228213879285369097916854740598749355945743923856197029345156977076960743}{47797458824031419062928831453720089493461693435662247091592187815672308762} a^{7} + \frac{7819717699320726035319718255328421062095708107415972108060780728087638745}{47797458824031419062928831453720089493461693435662247091592187815672308762} a^{6} + \frac{424237605697983631194656586556731081884362003831013425668695801239188871}{47797458824031419062928831453720089493461693435662247091592187815672308762} a^{5} - \frac{18891992843689447350500294030719510644884821274318686866927243648221341629}{47797458824031419062928831453720089493461693435662247091592187815672308762} a^{4} + \frac{11889293729243481946594051129763436566544951792066510525547406742986319769}{47797458824031419062928831453720089493461693435662247091592187815672308762} a^{3} + \frac{23011171986089005543794930591679441828314950068037148626996806462483844647}{47797458824031419062928831453720089493461693435662247091592187815672308762} a^{2} - \frac{19030825135390327529234984347682336811822341995758086755267306702378689657}{47797458824031419062928831453720089493461693435662247091592187815672308762} a - \frac{3786375476452252523939910471579652581402615440088402873513000995076850828}{23898729412015709531464415726860044746730846717831123545796093907836154381}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 139132652452000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T565):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.179859661768855001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{12}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $31$ | 31.4.3.2 | $x^{4} - 31$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 31.4.3.2 | $x^{4} - 31$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 31.4.3.2 | $x^{4} - 31$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 31.4.3.2 | $x^{4} - 31$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $41$ | 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |