Normalized defining polynomial
\( x^{16} - 4 x^{15} + 6 x^{14} + 36 x^{13} - 221 x^{12} + 456 x^{11} - 266 x^{10} - 1088 x^{9} + 1584 x^{8} + 4432 x^{7} - 9896 x^{6} + 1660 x^{5} + 7687 x^{4} - 5972 x^{3} + 1140 x^{2} + 480 x - 199 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2963025166336000000000000=2^{32}\cdot 5^{12}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{10} a^{12} + \frac{2}{5} a^{11} + \frac{2}{5} a^{10} + \frac{2}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a + \frac{1}{10}$, $\frac{1}{10} a^{13} - \frac{1}{5} a^{11} - \frac{1}{5} a^{10} - \frac{2}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{6} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{3}{10} a - \frac{2}{5}$, $\frac{1}{410} a^{14} - \frac{9}{205} a^{13} + \frac{2}{205} a^{12} - \frac{61}{205} a^{11} - \frac{72}{205} a^{10} + \frac{84}{205} a^{9} - \frac{77}{205} a^{8} + \frac{26}{205} a^{7} - \frac{63}{205} a^{6} - \frac{21}{205} a^{5} - \frac{91}{205} a^{4} + \frac{58}{205} a^{3} + \frac{57}{410} a^{2} + \frac{87}{205} a - \frac{56}{205}$, $\frac{1}{8283850735494412539310} a^{15} + \frac{1153657331496316014}{4141925367747206269655} a^{14} - \frac{34973673100889340003}{8283850735494412539310} a^{13} + \frac{3020449906547265519}{101022569945053811455} a^{12} + \frac{1157517809083229017233}{4141925367747206269655} a^{11} - \frac{165939998722489279507}{4141925367747206269655} a^{10} - \frac{593039230225531106128}{4141925367747206269655} a^{9} - \frac{482463267053407018919}{4141925367747206269655} a^{8} - \frac{1700250265519514718427}{4141925367747206269655} a^{7} - \frac{1985779441605733174983}{4141925367747206269655} a^{6} - \frac{452374299107227874556}{4141925367747206269655} a^{5} - \frac{183537680600916570591}{4141925367747206269655} a^{4} + \frac{436165093733774098499}{8283850735494412539310} a^{3} + \frac{1460751770913378909004}{4141925367747206269655} a^{2} + \frac{921259568640321193797}{8283850735494412539310} a + \frac{357362712550556607931}{828385073549441253931}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2606459.0867 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4:C_2^2.C_2$ (as 16T317):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $C_2^4:C_2^2.C_2$ |
| Character table for $C_2^4:C_2^2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), 4.4.8000.1, \(\Q(\zeta_{20})^+\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\zeta_{40})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.3 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ |
| 2.8.16.3 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 41 | Data not computed | ||||||