Normalized defining polynomial
\( x^{16} - 4 x^{15} - 6 x^{14} + 40 x^{13} - 82 x^{12} + 92 x^{11} + 28 x^{10} + 308 x^{9} + 227 x^{8} + 916 x^{7} - 3228 x^{6} - 2980 x^{5} - 1370 x^{4} + 1544 x^{3} + 1150 x^{2} + 124 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2963025166336000000000000=2^{32}\cdot 5^{12}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{40} a^{12} - \frac{1}{20} a^{11} + \frac{1}{40} a^{10} - \frac{1}{20} a^{9} + \frac{1}{5} a^{8} - \frac{7}{20} a^{7} + \frac{11}{40} a^{6} + \frac{1}{20} a^{5} + \frac{3}{10} a^{4} + \frac{7}{20} a^{3} - \frac{3}{40} a^{2} - \frac{9}{20} a + \frac{1}{40}$, $\frac{1}{40} a^{13} - \frac{3}{40} a^{11} + \frac{1}{10} a^{9} + \frac{1}{20} a^{8} - \frac{17}{40} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{20} a^{4} - \frac{3}{8} a^{3} + \frac{2}{5} a^{2} + \frac{1}{8} a + \frac{1}{20}$, $\frac{1}{80} a^{14} - \frac{1}{80} a^{13} + \frac{17}{80} a^{11} - \frac{13}{80} a^{10} + \frac{3}{20} a^{9} + \frac{1}{16} a^{8} - \frac{21}{80} a^{7} - \frac{7}{16} a^{6} + \frac{1}{10} a^{5} - \frac{17}{80} a^{4} + \frac{13}{80} a^{3} + \frac{3}{80} a - \frac{39}{80}$, $\frac{1}{26791849934881008424400} a^{15} - \frac{160650147976235970991}{26791849934881008424400} a^{14} - \frac{26113750860478785447}{13395924967440504212200} a^{13} - \frac{42036549314895335617}{26791849934881008424400} a^{12} - \frac{247595044098764138043}{26791849934881008424400} a^{11} + \frac{131250264009645331903}{1674490620930063026525} a^{10} - \frac{3353165295645620866623}{26791849934881008424400} a^{9} - \frac{6406609131354244646531}{26791849934881008424400} a^{8} - \frac{9033402978904066002701}{26791849934881008424400} a^{7} - \frac{1795507177566297139113}{6697962483720252106100} a^{6} + \frac{12575683974870856330971}{26791849934881008424400} a^{5} + \frac{6778718098142799564683}{26791849934881008424400} a^{4} + \frac{6615520002795091717}{326729877254646444200} a^{3} - \frac{4917757650054957740359}{26791849934881008424400} a^{2} - \frac{8463915386373269555337}{26791849934881008424400} a - \frac{417108239396614502619}{3348981241860126053050}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1400948.18183 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3$ (as 16T268):
| A solvable group of order 128 |
| The 29 conjugacy class representatives for $C_2^4.C_2^3$ |
| Character table for $C_2^4.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), \(\Q(\zeta_{20})^+\), 4.4.8000.1, \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\zeta_{40})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.3 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ |
| 2.8.16.3 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 41 | Data not computed | ||||||