Properties

Label 16.8.29561606196...0000.2
Degree $16$
Signature $[8, 4]$
Discriminant $2^{8}\cdot 5^{8}\cdot 29^{6}\cdot 89^{6}$
Root discriminant $60.18$
Ramified primes $2, 5, 29, 89$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group $C_2^2.C_2^5.C_2$ (as 16T486)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![170431, -497997, 54120, 973746, -63967, -36084, -326403, 55753, 73742, -18133, -1923, 874, -252, 59, -5, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 3*x^15 - 5*x^14 + 59*x^13 - 252*x^12 + 874*x^11 - 1923*x^10 - 18133*x^9 + 73742*x^8 + 55753*x^7 - 326403*x^6 - 36084*x^5 - 63967*x^4 + 973746*x^3 + 54120*x^2 - 497997*x + 170431)
 
gp: K = bnfinit(x^16 - 3*x^15 - 5*x^14 + 59*x^13 - 252*x^12 + 874*x^11 - 1923*x^10 - 18133*x^9 + 73742*x^8 + 55753*x^7 - 326403*x^6 - 36084*x^5 - 63967*x^4 + 973746*x^3 + 54120*x^2 - 497997*x + 170431, 1)
 

Normalized defining polynomial

\( x^{16} - 3 x^{15} - 5 x^{14} + 59 x^{13} - 252 x^{12} + 874 x^{11} - 1923 x^{10} - 18133 x^{9} + 73742 x^{8} + 55753 x^{7} - 326403 x^{6} - 36084 x^{5} - 63967 x^{4} + 973746 x^{3} + 54120 x^{2} - 497997 x + 170431 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(29561606196428930148100000000=2^{8}\cdot 5^{8}\cdot 29^{6}\cdot 89^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $60.18$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 29, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{940035779091453852249228419922618611888835226019} a^{15} - \frac{219576254341120353085220326678924818234246020852}{940035779091453852249228419922618611888835226019} a^{14} + \frac{227526615921122183373059391606415193212934566070}{940035779091453852249228419922618611888835226019} a^{13} + \frac{5151193817226637605992673109007938030509009881}{85457798099223077477202583629328964717166838729} a^{12} - \frac{12344422245674492877383736505279104352888352335}{940035779091453852249228419922618611888835226019} a^{11} + \frac{183182342780555573014728943282919076457819670234}{940035779091453852249228419922618611888835226019} a^{10} - \frac{36623155388645137628191038062823516970533783259}{940035779091453852249228419922618611888835226019} a^{9} + \frac{425971888049897687802730028288649271013416466529}{940035779091453852249228419922618611888835226019} a^{8} + \frac{343509168310403231923471126728301131083790118}{3933204096616961724892169121015140635518139021} a^{7} - \frac{204250389504660050570779345784052599351155028363}{940035779091453852249228419922618611888835226019} a^{6} + \frac{433892959667356391720579466639612877668650779410}{940035779091453852249228419922618611888835226019} a^{5} - \frac{175201444222655303707903137147387654797767536527}{940035779091453852249228419922618611888835226019} a^{4} + \frac{338213699969471246568841116096350894883822977038}{940035779091453852249228419922618611888835226019} a^{3} + \frac{405791108736540683370078589878631705383077639437}{940035779091453852249228419922618611888835226019} a^{2} - \frac{141864078164036559262601889786797244112094685812}{940035779091453852249228419922618611888835226019} a + \frac{341913936276420993336080873632210763633668268262}{940035779091453852249228419922618611888835226019}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 77474338.8811 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2.C_2^5.C_2$ (as 16T486):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 34 conjugacy class representatives for $C_2^2.C_2^5.C_2$
Character table for $C_2^2.C_2^5.C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.725.1, 4.4.64525.1, 4.4.2225.1, 8.8.4163475625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.4$x^{8} + 2 x^{7} + 2 x^{6} + 8 x^{3} + 48$$2$$4$$8$$C_8$$[2]^{4}$
2.8.0.1$x^{8} + x^{4} + x^{3} + x + 1$$1$$8$$0$$C_8$$[\ ]^{8}$
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$29$29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.2$x^{4} - 29 x^{2} + 2523$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$89$89.2.1.2$x^{2} + 267$$2$$1$$1$$C_2$$[\ ]_{2}$
89.2.1.2$x^{2} + 267$$2$$1$$1$$C_2$$[\ ]_{2}$
89.2.1.2$x^{2} + 267$$2$$1$$1$$C_2$$[\ ]_{2}$
89.2.1.2$x^{2} + 267$$2$$1$$1$$C_2$$[\ ]_{2}$
89.4.0.1$x^{4} - x + 27$$1$$4$$0$$C_4$$[\ ]^{4}$
89.4.2.2$x^{4} - 89 x^{2} + 47526$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$